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ABSTRACT

The main substantive finding of the recent structural vector autoregression literature with a differ-

enced specification of hours (DSVAR) is that technology shocks lead to a fall in hours. Researchers

have used these results to argue that standard business cycle models in which technology shocks

leads to a rise in hours should be discarded. We evaluate the DSVAR approach by asking the

following: Is the specification derived from this approach misspecified when the data is generated

by the very model the literature is trying to discard, namely the standard business cycle model?

We find that it is misspecified. Moreover, this misspecification is so great that it leads to mistaken

inferences that are quantitatively large. We show that the other popular specification which uses

the level of hours (LSVAR) is also misspecified with respect to the standard business cycle model.

We argue that an alternative approach, the business cycle accounting approach, is a more fruitful

technique for guiding the development of business cycle theory.
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The goal of the Structural Vector Autoregression (SVAR) approach is to identify

promising classes of business cycle models using a simple time series technique. The approach

has two popular specifications both of which use data on labor productivity and hours. The

differenced specification, called the DSVAR, uses the first difference in hours while the level

specification, called the LSVAR, uses the level of hours. We evaluate the SVAR procedure

under both specifications by applying it to data generated from a standard business cycle

model and find that both specifications are misspecified. With respect to the DSVAR our

key finding is that the misspecification leads to quantitatively large mistaken inferences about

standard business cycle models. With respect to the LSVAR our key finding is that in samples

as long as those for postwar U.S. data the misspecification leads to uninformative inferences

while for much longer samples the misspecification leads to mistaken inferences.

The SVAR approach begins with the idea that it is possible to obtain impulse responses

from the data using only a minimal amount of economic theory.1 These impulse response

functions are the responses of the model’s economic system to innovations in various shocks.

The hope is that the SVAR assumptions nest most business cycle models, at least approxi-

mately, so that the impulse responses obtained from the VAR set the standard for the theory:

any promising model must produce impulse responses similar to those from the VARs.

We focus on the DSVAR and the LSVAR literatures that study what happens after a

technology shock. The findings of the two literatures are quite different. The main finding of

the DSVAR literature is that a technology shock leads to a fall in labor input. Gali (1999),

Francis and Ramey (2003), and Gali and Rabanal (2004) use the DSVAR procedure to draw

1See, among others, Shapiro and Watson 1988, Blanchard and Quah 1989, Gali 1999, Francis and Ramey

2003, Christiano, Eichenbaum and Vigfusson 2003, Uhlig 2003, and Gali and Rabanal 2004.



the inference that this evidence dooms existing real business cycle models as unpromising and

points to other models, such as sticky price models, as a more promising class of models. For

example, Francis and Ramey (2003, p.2) say, “...the original technology-driven real business

cycle hypothesis does appear to be dead.” Likewise, Gali and Rabanal (2004, conclusion)

state, “The bulk of the evidence reported in the present paper raises serious doubts about

the importance of changes in aggregate technology as a significant (or, even more, a dominant)

force behind business cycles ...”

In the LSVAR literature the range of results reported by researchers is very wide.

Francis and Ramey (2004) argue that the LSVAR evidence shows that real business cycle

models are dead. Christiano, Eichenbaum and Vigfusson (2003) argue that their LSVAR

results imply that these models are alive and well. Gali and Rabanal (2004) argue that

their LSVAR results, by themselves, are inconclusive. As we document below, while all

three studies use slightly different methodologies, their sharply contrasting results are driven

almost entirely by differences in the underlying data. It is worth noting that all three of these

studies use very similar conceptual measures of productivity and Christiano, Eichenbaum and

Vigfusson and Gali and Rabanal use very similar conceptual measures of hours. That the

LSVAR results are so sensitive to seemingly minor differences in measuring productivity and

hours raises doubts about the reliability of the LSVAR procedure for drawing inferences about

underlying models.

Both branches of the SVAR literature make several assumptions to identify the un-

derlying shocks, often labelled as demand and technology shocks. This literature views two

identifying assumptions as key: (i) demand shocks have no permanent effect on the level of

labor productivity while technology shocks do and, (ii) the demand and technology shocks
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are orthogonal.

We test the SVAR procedure as follows. We generate data from an economic model,

apply the SVAR procedures to this data and ask whether the impulse responses identified by

the SVAR procedures are close to the model’s impulse responses. To tilt our test in favor of

the SVAR procedure we focus mainly on a very stripped-down business cycle model, referred

to as the baseline model. This model satisfies the two key identifying assumptions of the

SVAR literature.

Consider first our implementation of the DSVAR procedure. One critique of this pro-

cedure is that in all economic models hours per person is bounded and therefore the stochastic

process for hours per person cannot literally have a unit root. Hence the DSVAR procedure is

misspecified with respect to all economic models and thus is useless for distinguishing between

broad classes of models. In our view this critique is simplistic. We are sympathetic with the

view expressed in the DSVAR literature that the unit root specification is best viewed as a

statistical approximation for variables with high serial correlation. (See, for example, Francis

and Ramey 2003, p.6 for an eloquent defense of this position.)

We follow the literature in adopting a three step procedure. First, we conduct unit

root tests on hours to the data generated from an estimated version of the baseline model and

retain those sequences for which tests cannot reject a unit root. Second, we apply the Akaike

criterion to the sequences retained in the first step and retain those sequences for which the

criterion picks a lag length less than or equal to 4. We then estimate the DSVAR impulse

responses for each of these retained sequences using the standard identifying assumptions in

the DSVAR literature.

When we apply this procedure to data generated from the model of the same length as
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post—war U.S. data, we conclude that this shock leads to a decline in hours. This conclusion is

mistaken because in our model an innovation to technology leads to a rise in hours. Thus, we

show that a researcher who applied the DSVAR procedure to our model would systematically

draw the wrong inference.

We then attempt to deconstruct the source of the mistaken inference with respect

to the impulse responses. We focus on an auxiliary assumption which is not emphasized

as central in the SVAR literature: the stochastic process for the first differences of labor

productivity and hours is well approximated by an autoregressive representation with a small

number of lags. We show that this auxiliary assumption fails to be satisfied in a standard

real business cycle model and that this failure is at the heart of the mistaken inference. We

show that in our model the autoregressive representation has an infinite order in which the

coefficients die off very slowly. We go on to show that the key reason for these features of

the autoregressive representation is that our model has capital. Since capital accumulation is

central to business cycle models these features of the autoregressive representation are likely

to show up in most models. We also show that given data from our model as short as postwar

data standard lag length tests do not detect the need for more lags.

Consider next the LSVAR procedure. In our two step implementation of this pro-

cedure, we first apply the Akaike criterion to data generated from our baseline model and

retain those sequences for which the criterion picks a lag length less than or equal to 4. In our

second step we apply an LSVAR to the retained sequences, and compare the resulting impulse

responses to the model’s impulse responses. When we apply this SVAR procedure to data

from our baseline model of the same length as post—war U.S. data, the resulting confidence

bands on the impulse responses are so wide that the procedure is essentially uninformative.
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For example, the impulse responses of most real business cycle models as well as most sticky

price models are well within these bands. In this sense, this specification sheds no light on

the models it is meant to illuminate.

We also apply the LSVAR procedure to a data series many times longer than post—war

U.S. data and find that the procedure leads to mistaken inference. We argue that the source

of the mistaken inference is similar to that of the DSVAR test: the stochastic process for the

productivity and hours is not well approximated by an autoregressive representation with a

small number of lags. Moreover, standard lag length tests do not detect the need for more

lags.

Note that in our test we use data generated from an economic model. We do so because

in the model we can take a clear stand on what constitutes a technology shock. Hence, the

question of whether fluctuations in factor productivity in U.S. data come from changes in

technology or from other forces is totally irrelevant for our test. We emphasize that our test

is a logical analysis of the inferences drawn from the SVAR procedures and neither asks nor

depends on why factor productivity in the U.S. data fluctuates.

In this paper, we argue that even the most standard business cycle model fails to satisfy

the assumptions underlying the SVAR approach. Hence, the representations derived from the

SVAR procedure are misspecified with respect to the very models the procedure is meant to

shed light on. Of course, in almost all applied work the statistical representations of the theory

are, in a narrow sense, technically misspecified with respect to the class of theoretical models

under consideration. Our contribution is to show that this misspecification is quantitatively

large.

Finally, we note that our critique builds on those in a number of papers that we discuss
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below, especially Hansen and Sargent (1980, 1991) and Cooley and Dwyer (1998).

1. The Structural VAR Procedure

We briefly review a version of the Blanchard and Quah (1989) structural VAR proce-

dure recently used by Gali (1999), Gali and Rabanal (2004), Francis and Ramey (2003).

The procedure starts with a vector autoregression of the form

(1) Xt = B1Xt−1 + . . .+BpXt−p + vt

where the error terms have variance-covariance matrix Evtv
0
t = Ω and are orthogonal at

all leads and lags so that Evtv
0
s = 0 for s < t. The vector Xt is given by (x1t, x2t)

0 where

x1t = ∆ log(yt/lt) is the first difference of the log of labor productivity and x2t is a measure

of the labor input. We consider two different specifications: in the difference specification

(DSVAR), x2t is the first difference in the log of the labor input, in the level specification

(LSVAR), x2t is the log of the labor input.

This vector autoregression, as it stands, should be thought of as a reduced form of

an economic model. Specifically, the error terms vt have no structural interpretation. It is

convenient to invert this vector autoregression in order to express it in its equivalent moving

average form

(2) Xt = vt + C1vt−1 + C2vt−2 + . . .

where C1 = B1, C2 = B1C1 +B2, C3 = B1C2 +B2C1 +B3 and so on.

The idea behind the structural VAR procedure is to use the bare minimum of economic
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theory together with the reduced form model (2) to back out structural shocks and the

responses to those shocks. To that end, consider the following structural model which links

the variations in the log of labor productivity and the labor input to a (possibly infinite)

distributed lag of two shocks, thought of as a technology shock and a demand shock. The

empirical model is given by

(3) Xt = A0εt +A1εt−1 +A2εt−2 + . . .

where εt = (ε
z
t ,ε

d
t )
0 represent the technology and demand shocks with Eεtε

0
t = Σ and Eεtε

0
s =

0 for s 6= t.

The structural parameters Ai and Σ are related to the reduced form parameters Ci

and Ω by A0ΣA
0
0 = Ω and Aj = CjA0 for j ≥ 1. The structural shocks εt are related to the

reduced form shocks vt by A0εt = vt so that εt = A−10 vt.

The assumptions used to identify the structural parameters from the reduced form pa-

rameters are as follows. The first assumption is that technology shocks and demand shocks

are orthogonal. If we interpret the structural shocks as having been scaled by their stan-

dard deviations, we can express this assumption as Σ = I so that Eεtε
0
t = I. The second

assumption, the long run restriction, is that

(4)

∞X
i=0

Ai(1, 2) = 0

where Ai(1, 2) is the element in the first row and second column of the matrix Ai. This

assumption is meant to capture the idea that demand shocks cannot affect the level of labor
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productivity in the very long run, while technology shocks may be able to do so.

These two assumptions give four equations in the four unknowns of A0 that allow us

to solve for A0 in terms of the estimated parameters Ci and Ω. The first assumption, Σ = I,

gives three nonlinear equations from A0A
0
0 = Ω = (ωij), namely, A0(1, 1)

2 +A0 (1, 2)
2 = ω11,

A0(1, 1)A0(2, 1) + A0(1, 2)A0(2, 2) = ω12, A0(2, 1)
2 + A0(2, 2)

2 = ω22. Let C̄ =
P∞

j=0Cj be

the sum of the moving average coefficient where C0 = I. The second assumption, (4), then

gives one linear equation, namely

C̄(1, 1)A0(1, 2) + C̄(1, 2)A0(2, 2) = 0.

The rest of the structural parameters Aj, j ≥ 1 follow from Aj = CjA0 for j ≥ 1. Under the

sign conventions that A0(1, 1) > 0, so that productivity rises with a technology shock, and

A0(2, 2) < 0, so that hours falls with a demand shock, the solution to these equations is

(5) A0(2, 2) = −
√
λ,A0(1, 2) = fA0(2, 2), A0(1, 1) =

p
ω11 − f 2λ,A0(2, 1) =

ω12 − fλ

A0(1, 1)

where f = −C̄(1, 2)/C̄(1, 1) and λ = [ω11ω22 − (ω12)2] / [ω11 − 2fω12 + f2ω22] . Note, for

later use, that A0(2, 1) is the response of hours on impact to a technology shock.

Here we focus on the differenced specification. We estimate the bivariate VAR using

ordinary least squares on U.S. quarterly data from 1959:1—2003:4. As is typical in the SVAR

literature we use four lags in the VAR. (See, for example, Gali 1999.) In terms of the data,

for output we use real GDP per capita from NIPA and for the labor input we use CPS data

on total hours worked in the noninstitutional population over sixteen divided by the total
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noninstitutional population over sixteen2.

In Figure 1 we report the impulse response the log level of hours obtained from (3)

along with 95 percent confidence bands computed using a bootstrap Monte Carlo procedure

with 1000 replications. We find that a positive shock to technology, εzt , leads to a persistent

and statistically significant fall in hours. These findings are similar to those in the literature

obtained using other measures of labor productivity and labor input, including those in Gali

(1999), Gali and Rabanal (2004), and Francis and Ramey (2003 and 2004). All of these

papers use conceptually similar measures of productivity and hours. Francis and Ramey

(2004) adjust the hours series to account for demographic changes.

2. A Standard Business Cycle Model

Our test uses versions of an entirely standard business cycle model. (See, among a

host of others, McGrattan 1989.) We consider a stripped down version of the model, called

the baseline model, that meets the two key identifying assumptions of the SVAR procedure,

namely that demand shocks have no permanent effect on the level of labor productivity and

that the demand and technology shocks are orthogonal. The baseline model is the best

case scenario for the SVAR procedure. This model has two stochastic variables, technology

shocks Zt, which have a unit root, and an orthogonal tax on labor τ lt. It also has a constant

investment tax τx and a constant level of normalized government spending ḡ = gt/Zt.

Consumers maximize expected utility over per capita consumption ct and per capita

2The labor data was kindly provided to us by Ueberfeldt and Prescott.
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labor lt, E0
P∞

t=0[β(1 + γ)]tU(ct, lt) subject to the budget constraint

(6) ct + (1 + τx)[(1 + γ)kt+1 − (1− δ)kt] = (1− τ lt)wtlt + rtkt + Tt

where kt denotes the per capita capital stock, wt the wage rate, rt the rental rate on capital,

β the discount factor, γ the growth rate of population, δ the depreciation rate of capital, and

Tt lump-sum taxes.

The firms’ production function is F (kt, Ztlt), where Zt is labor-augmenting technical

progress. Firms maximize F (kt, Ztlt)− rtkt − wtlt. The resource constraint is

(7) ct + gt + (1 + γ)kt+1 = yt + (1− δ)kt

where yt and gt denote per capita output and per capita government consumption.

In the baseline model the stochastic process for the two shocks logZt and τ lt is

(8) logZt+1 = µz + logZt + σzε
z
mt+1

(9) τ lt+1 = (1− ρ)τ̄ l + ρτ lt + σlε
d
mt+1

where εzmt and εdmt are standard normal random variables that we refer to as the technology

and demand shocks for the model. These variables are independent of each other and i.i.d.

over time. We refer to σzε
z
mt and σlε

d
mt as the innovations to technology and labor. These

innovations have standard deviations σz and σl. The constant µz is the drift term in the

random walk for technology. The constant τ̄ l is the mean of the labor tax and ρ is the
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persistence parameter for the labor tax. We restrict ρ to be less than one so that innovations

to the labor tax have no permanent effects.

We use functional forms and parameter values familiar from the business cycle litera-

ture. We assume that the production function has the form F (k, l) = kθl1−θ and the utility

function has the form U(c, l) = log c + ψ log(l̄ − l). We choose the capital share θ = .35, the

depreciation rate δ = .046, and the discount factor β = .97. The population growth rate is

1.5 percent at an annual rate, the time allocation parameter ψ = 2.24, and the endowment

of time l̄ = 5, 000 hours per year.

In estimating the stochastic processes for our model we use no direct data on tax rates.

Rather, the tax rate on labor and investment are treated as unobserved and are inferred from

the model’s equilibrium conditions. We think of the tax on labor as standing in for a variety of

distortions that affect the static first order condition for labor. Likewise, we think of the tax

on investment as standing in for a variety of distortions to the intertemporal Euler equation.

(See Chari, Kehoe and McGrattan 2003 for a formalization of these ideas.)

We use a standard Kalman filtering approach to estimate our model. To use this

approach we write a log-linearized version of our model in state space form in terms of

stationary variables. To do so we let k̂t = kt/Zt−1 and zt = Zt/Zt−1 and st = (log zt, τ lt). The

state in period t is St = (log k̂t, st, log k̂t−1, st−1, 1) denote the state in period t. The state’s

evolution is determined by the capital stock decision rule

log k̂t+1 = γ0 + γk log k̂t + γz log zt + γlτ lt
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and exogenous process for the shocks st = (log zt, τ lt) which in matrix form is given by

(10) st+1 = P̄ + Pst +Qεmt+1.

where P̄ = (µz, (1 − ρ)τ̄ l) and P is a matrix with all zeros except the lower right element

P22 = ρ, Q is a diagonal matrix with diagonal elements (σz, σl) and εmt = (ε
z
mt, ε

d
mt). We can

stack up these equations to give the state transition equation

(11) St+1 = FSt +Gεmt+1.

Let the observable variables Yt = (∆ log yt, log lt,∆ log xt,∆ log ct)
0 denote the growth rate

of output, the log level of labor, the growth rate of investment, and the growth rate of

consumption. The decision rule for labor in the model has the form

(12) log lt = φ0 + φk log k̂t + φz log zt + φlτ lt.

and the decision rule for the growth rate of output has a similar form. We can write the

observed variables Yt = HSt where H is a matrix of coefficients of the linear decision rules

for the vector Yt. Because we have only two shocks in our model we add a small amount of

measurement error ut to what is observed and write the observed variables as

(13) Yt = HSt + ut.

In practice, we choose the parameters of the covariance matrix of the measurement error to
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allow just enough measurement error to avoid invertibility problems during estimation.

We then use the maximum likelihood procedure described in McGrattan (1989) and

Anderson et al. (1996) to estimate the parameters P̄ , P , and Q of the vector AR1 process

using data on output, the labor input, investment, and consumption. We report the parameter

values for the stochastic processes for the baseline model in Table 1.

3. Testing the DSVAR Procedure

Here we simulate data from our baseline model and ask if the SVAR procedure using

the differenced specification, or simply the DSVAR procedure, produces impulse responses

similar to the theoretical impulse responses in the model. We find that it does not. In

particular, a researcher who applied the DSVAR procedure to data from our model would

conclude that in the underlying model a positive technology shock leads to a fall in hours

on impact. In the underlying model, however, a positive technology shock leads to a rise

in hours. Our main finding is that the DSVAR procedure systematically draws the wrong

inferences about properties of the underlying model.

We begin with the impulse response from the baseline model to a technology shock.

We start at a steady state and set the technology shock innovations εzm0 > 0, εzmt = 0 for

t ≥ 1, and the labor tax innovations εdmt = 0 for all t. In Figure 2 we see that on impact, a

shock to technology leads to a persistent increase in hours. The left vertical axis follows the

SVAR literature and measures the response to a one standard deviation shock in εzmt while

the right vertical axis follows the business cycle literature and converts this response to a one

percent shock to total factor productivity. In order to relate the two vertical axes, note that

1 unit on the left vertical axis corresponds to 1/(1 − θ)σz units on the right axis. All our
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impulse response plots use two axes of this form. We see that on impact a one percent shock

to total factor productivity leads to an increase in hours of .44 percent.

Consider now applying the DSVAR procedure to data generated by our baseline model.

As we have discussed, we implement the DSVAR procedure in three steps. For any data series

generated from our model we first conduct an Augmented Dickey—Fuller unit root test on

hours (with a trend and 4 lags). If the test cannot reject a unit root we then apply the Akaike

criterion to the sequences retained in the first step and retain those sequences for which the

criterion picks a lag length less than or equal to 4. In our third step, we run the DSVAR3.

One way to apply this procedure is as follows. Choose the sequence of shocks in

the model to replicate the U.S. data on labor productivity and hours exactly. (This exact

replication can be done because we have two shocks and two variables per period.) We

then apply the SVAR procedure on this data generated by the model. By construction, an

Augmented Dickey Fuller test will not reject a unit root in hours, since it did not for U.S.

data. We then run two ordinary least squares regressions each with four lags on the first

difference of the log of both labor productivity and hours. Clearly, the DSVAR specification

will reproduce Figure 1 exactly. Thus, the responses to shocks that this procedure identifies

as technology shocks is very different from the true responses to technology shocks in the

model displayed in Figure 2. In particular, the DSVAR procedure gets the sign wrong on

how technology shocks affect hours.

Our analysis so far leaves open the possibility that the sequence of shocks our model

needs to produce the U.S. data is very unlikely. Perhaps, then, the DSVAR procedure fails

3We also implemented two other procedures. In one we simply replaced the ADF unit root test with other

popular unit root tests. In the other we retained all data sequences, regardless of the results of the ADF test.

Under both of these procedures our findings were virtually identical to the ones reported here.
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for that atypical sequence of shocks but it would not fail for a more typical sequence. To

address this possibility we treat the baseline model as the data-generating process and draw

a large number of sequences of the same length as our data length, namely 180 quarters. We

apply the Augmented Dickey Fuller test to the hours series for each sequence. We retain only

those sequences for which the test cannot reject a unit root at the 5% level. The retained

sequences represent about 80% of all the sequences. We then apply the Akaike criterion to

the sequences retained in the first step and retain those sequences for which the criterion

picks a lag length less than or equal to 4. We find that approximately 98% of the first step

sequences are retained in this second step. (We also found similar retention rates applying

likelihood ratio tests to 5 lags versus 4 lags.)

We report features of the impulse responses of hours to technology shocks that result

from running the DSVAR specification on 1,000 retained sequences. In the left panel of

Figure 3, we plot a histogram of the impact coefficients over the 1,000 sequences. The

histogram shows that almost all of the impact coefficients are negative. The right panel of

Figure 3 reports the range of estimated impulse responses over these 1,000 sequences for 12

periods. We construct this range by discarding the largest 2.5% and the smallest 2.5% of the

impulse response coefficients in each period and report the range of the remaining 95% of the

impulse response coefficients. In Figure 4 we plot the mean impulse response across these

1,000 sequences as well as the mean of the bootstrapped confidence bands across these same

sequences. From Figures 2, 3, and 4, we see that the impulse responses from the DSVAR

procedure are very different from the theoretical impulse responses.

We next ask, suppose for each of the 1,000 sequences a researcher tested the hypothesis

that the impact coefficient of the DSVAR equals the theoretical impact coefficient at the 5%
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significance level. We find that such a researcher would mistakenly infer that the data did

not come from our real business cycle model essentially 100% of the time.

Next we ask if our results are sensitive to the particular parameters of the stochastic

process for shocks that we have used. In Figure 5 we report on the mean value of the impact

coefficient and the mean value of the bootstrapped confidence intervals for various values of

the relative volatility of the labor tax and the technology shock as measured by σl/σz for

two values of the persistence parameter for labor taxes ρ. From Figure 5 we see that our key

findings our not sensitive to values in this range.

There is a sense in which the range of parameter values we have considered contain

most reasonable values. To see this note that we estimated the parameters of the baseline

model’s stochastic process using maximum likelihood on GDP and hours per person. Re-

searchers in the SVAR literature often focus on productivity and hours measures for a subset

of the economy—the business sector. In Table 1 we report on the parameters obtained when

we reestimate the model on the data used by Gali (1999), Francis and Ramey (2004) and

Christiano, Eichenbaum and Vigfusson (2003). All of these parameters fall within the range

of those used in Figure 5.

4. Deconstructing the DSVAR Procedure’s Mistaken Inferences

In addition to the main identifying assumptions the DSVAR procedure makes a key

auxiliary assumption: in the models of interest Xt = (∆(yt/lt), ∆lt) has an autoregressive

representation that is well approximated with a small number of lags, typically 4. This

assumption could fail for one of two reasons. First, such models do not have invertible moving

average representations in Xt and therefore do not have an autoregressive representation.
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Second, the models do have invertible moving average representations but the associated

autoregressive representations are not well approximated with a small number of lags. In this

section we argue that lack of invertibility, while technically true, does not play an important

role in the mistaken inference. We argue that instead the heart of the DSVAR’s mistaken

inference is that the autoregressive representation is not well approximated with a small

number of lags. Moreover, standard lag length tests do not detect the need for more lags.

Technically, our model does not have an invertible moving average representation for

Xt = (∆(yt/lt),∆lt). The reason is essentially that hours in our model do not have a unit root.

For our model, specifying the SVAR in the difference in hours amounts to over—differencing

hours and introduces a root of 1 in the moving average representation, which is at the edge

of the noninvertibility region of roots. To show that this lack of invertibility is inessential

in leading to the mistaken inference we consider a specification of the SVAR in which hours

are quasi-differenced, referred to as the QDSVAR specification. In this specification Xt =

(∆(yt/lt), lt − αlt−1) where α is less than 1. With this specification it turns out that our

model has an invertible moving average representation. Nevertheless, when α is close to 1

the impulse responses of the QDSVAR and the DSVAR are so close as to be indistinguishable.

In what follows we will set the quasi-differencing parameter equal to .99. (It is worth noting

that the literature contains several models in which the lack of invertibility of the moving

average representation is not knife-edge. See, for example, Hansen and Sargent (1980) and

Quah (1990).)

Let the invertible moving average representation of Xt be denoted

Xt = Am0εmt +Am1εmt−1 +Am2εmt−2 + . . .
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where here and throughout the subscript m signifies the model. Recall that the covariance

matrix of εmt is the identity matrix. This moving average representation can be written in

the Wold form

(14) Xt = vmt + Cm1vmt−1 + Cm2vmt−2 + . . .

where Cmj = Amj(Am0)
−1 and the shocks vmt = Am0εmt have covariance matrix Ωm =

Am0A
0
m0. Let C̄m =

P∞
j=0Cmj. The autoregressive representation of Xt is

(15) Xt = Bm1Xt−1 +Bm2Xt−2 + . . .+ vmt

where Bm1 = Cm1, Bm2 = Cm2 − Bm1Cm1, Bm3 = Cm3 −Bm1Cm2 − Bm2Cm1 and so on. The

proof of the following proposition is available upon request.

Proposition 1. The autoregressive representation of Xt is infinite order and satisfies

Bmj = MBmj−1 for j ≥ 2 where the matrix M = Cm2(Cm1)
−1 − Cm1 and has eigenvalues

equal to the quasi-differencing parameter λ1 = α and λ2 = (γk − γlφk/φl − θ)/(1− θ) where

γk, γl, φk and φl are the coefficients of the decision rules and θ is the capital share.

Given our parameters (including the quasi-difference parameter α = .99) the eigenval-

ues are λ1 = .99 and λ2 = 97. These large eigenvalues suggest that an autoregression with a

small number of lags is a poor approximation to the infinite order autoregression. Of course,

with many lags the autoregression approximates the infinite order autoregression well.

For an autoregression with one lag we can obtain an analytical expression for the
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impulse response coefficients. This autoregression is of the form

(16) Xt = B1Xt−1 + vt with Evtvt
0 = Ω.

Let C̄ =
P∞

j=0Cj be the associated sum of the moving average coefficients. Recall that for

an autoregression of the form (1) with an arbitrary number of lags the impact coefficients

are given by (5). Inspecting (5) we see that to compute the impact coefficients we need only

the estimated covariance matrix and the sum of the moving average coefficients. The proof

of the following proposition is available upon request.

Proposition 2. For our model, the population estimate of the covariance matrix in (16)

is

(17) Ω = Ωm +M
¡
Ωm − ΩmV (Xt)

−1Ωm

¢
M 0

and the (inverse of the) sum of the moving average coefficients associated with (16) is

(18) C̄−1 = (C̄m)
−1 +M(I −M)−1Cm1 +M(Ωm − V (Xt))V (Xt)

−1

where V (Xt) is the covariance matrix of Xt.

Consider a researcher who incorrectly specifies that the autoregressive representation

of Xt has only one lag and uses the SVAR procedure to uncover the associated impulse

responses. This researcher would infer that the covariance matrix of innovations is Ω and

that the sum of the moving average coefficients is C̄. The expressions given in (5) can then be
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used to compute the impact coefficients. Since the Ω and C̄ derived from the one lag VAR, in

general differ from the model’s Ωm and C̄m, typically the impulse responses will differ as well.

(Of course, if this researcher had specified an infinite number of lags the autoregression would

have recovered the model’s covariance matrix Ωm, the sum of the model’s moving average

coefficients C̄m and hence would have correctly uncovered the model’s impulse responses.)

We next ask how many lags are needed in practice to obtain a good approximation.

Obviously, in a short sample of length 180 it not possible to accurately estimate a QDSVAR

with a large number of lags. We choose a sample length of 100,000 so that we can accurately

estimate a QDSVAR with a large number of lags. In Figure 6a we display the model impulse

response and the impulse response of the QDSVAR specification with 4 lags. Because of the

long sample length the impulse response coefficients are precisely estimated and the associated

bootstrapped confidence bands lie essentially on top of the impulse responses. Figure 6a shows

that even with the long sample the QDSVAR with a lag length of 4 leads to systematically

mistaken inference.

Furthermore, comparing the mean impulse response over the short samples in Figure 4

with the impulse response in the long sample in Figure 6a we see that the impact coefficients

are roughly the same while the coefficients at longer lags differ somewhat. This comparison

shows that the estimates of the impulse responses using short samples are biased, as is well—

known in the literature on estimating autoregressions. The comparison in Figure 6a of the

differences between the impulse responses of the model with that of the QDSVAR shows,

however, that small sample biases are not the source of the mistaken inference.

In Figures 6b and 6c we display the QDSVAR responses for lag lengths p ranging from 4

to 200. Notice that even with 20 lags, because the confidence bands are narrow, the QDSVAR
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would lead to mistaken inference. From Figure 6b and 6c we note that the convergence to

the model’s impulse response function is not monotonic. Finally, note that we need over 200

lags for the QDSVAR to well—approximate the model’s autoregressive representation.

We argue that the need for a large number of lags when we run the VAR with Xt =

(∆(yt/lt), lt − αlt−1) stems from the presence of capital in our model and the absence of

capital in the VAR specification. We make this argument by showing that as we make capital

less important by increasing its depreciation rate the impulse responses of the QDSVAR with

only 4 lags converge to the model’s impulse responses. In Figure 7, for two values of the

depreciation rate we plot the impulse responses for the model and for the QDSVAR with

4 lags estimated on samples of length 100,000. We see that when the depreciation rate is

95%, so that capital essentially depreciates completely within a period, the model and the

QDSVAR impulse responses are very close. Interestingly, even with depreciation rates of

20%, which is more than 4 times higher than our baseline value, the model and the QDSVAR

impulse responses are not close.

It is worth noting that when the model has essentially one shock the QDSVAR impulse

responses are close to the model impulse responses. Indeed in this case even a VAR with one

lag produces impulse responses close to the one in the model. In the limit when the variance

of the labor tax τ l is zero,MΩmM
0 =MΩmV (Xt)

−1ΩmM
0 so that from (17) we have that the

covariance Ω in (16) is equal to that in the model Ωm. Interestingly, because Ωm is singular

in the limit, the two impulse responses coincide even though the moving average coefficients

from the one-lag specification Cj do not equal the model’s moving average coefficients Cmj .
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5. The LSVAR Procedure

Here we consider a popular alternative specification to the DSVAR we have discussed

above the LSVAR, which replaces the first difference in the log of hours by the level of the

log of hours. (See, Gali 1999, Francis and Ramey 2003, and Christiano, Eichenbaum and

Vigfusson 2003 who debate whether the differenced or the level specification is the most

appropriate.) We find that this procedure is also not a useful guide for developing business

cycle models. In contrast to the DSVAR procedure which leads to systematically mistaken

inferences, in samples as long as postwar data, the LSVAR procedure in unable to distinguish

among broad classes of models. In particular, we argue that for such samples this procedure

cannot distinguish between sticky price models and real business cycle models. Furthermore,

in very long samples the procedure leads to systematically mistaken inferences.

A. Impulse Responses for 4 U.S. Datasets

We begin by displaying impulse responses and the associated confidence bands ob-

tained by running the LSVAR specification with 4 lags using ordinary least squares on 4 U.S.

datasets. It turns out that the impulse responses are very different for these four datasets.

(It is worth noting that the impulse responses from the DSVAR specification on these same

datasets are very similar.)

For the first series we use the data constructed by Francis and Ramey (2004) to

estimate an LSVAR for the period 1948:1—2002:4. Their measure of productivity is the BLS

series, “Index of output per hour, business.” They construct a new measure of hours by

adjusting the BLS series, “Index of hours in business” for government employment and for

demographic changes. In Figure 8a we see that an innovation that results in a one percent
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increase in total factor productivity leads to a persistent decline in hours. On impact the

decline is 1.9% and is significantly different from zero at the 5% level.

In the second we follow Christiano, Eichenbaum and Vigfusson (2003) who use the

DRI economic database to estimate an LSVAR for the period 1948:1—2001:4. Their measure

of productivity is business labor productivity (mnemonic LBOUT) and their measure of hours

is business hours divided by civilian population over the age of 16 (mnemonics LBMN and

P16). In Figure 8b we see that a positive technology shock leads to a persistent rise in

hours. On impact a one percent increase in total factor productivity results in a .5% increase

in hours. Notice that while the impact coefficient is not significantly different from zero,

the response coefficients are significant from lag 3 onwards. (It worth pointing out that in

their paper, Christiano, Eichenbaum and Vigfusson use an instrumental variables procedure

proposed by Shapiro and Watson (1988) rather than our OLS procedure and they compute

Bayesian confidence intervals rather than our bootstrapped confidence intervals. Comparing

our Figure 8b with Figure 2 in their paper we see that we obtain essentially the same results

that they do.)

For the third series we follow Gali and Rabanal (2004) and use data from 1948:1—

2002:4. Their measure of productivity is business labor productivity constructed as the ratio

of nonfarm business sector output to hours of all persons in the nonfarm business sector. For

hours they use the ratio of nonfarm hours to civilian population over the age of 16. The

source is Haver USECON database with mnemonics for output, hours, and population of

LXNFO, LXNFH and LNN. In Figure 8c, we see that a positive technology shock leads to a

persistent but statistically insignificant rise in hours. On impact the rise is essentially zero

and is not significantly different from zero at the 5% level.
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In the fourth we start with a measure of output and a measure of the labor input

using aggregate data from 1959:1—2003:4. We construct productivity as the ratio of output

to hours. For output we use real GDP from NIPA adjusted for indirect business taxes.

For both the productivity measure and the hours measure we use CPS data on total hours

worked in the noninstitutional population over sixteen divided by the total noninstitutional

population over sixteen. In Figure 8d a positive technology shock leads to a persistent but

statistically insignificant rise in hours at all lags. Note that on impact the rise is essentially

zero.

These sharply contrasting results lead researchers in the SVAR literature to draw

sharply contrasting inferences. Francis and Ramey argue that this evidence shows the real

business cycle models are dead. Christiano, Eichenbaum and Vigfusson argue that the models

are alive and well. Gali and Rabanal argue that these results, by themselves, are inconclusive.

They prefer the alternative DSVAR specification which they argue shows that real business

cycle models are also dead.

One question that naturally arises is why in their papers do Christiano, Eichenbaum

and Vigfusson (2004) and Gali and Rabanal (2004) get such different results for the LSVAR?

In their paper, Christiano, Eichenbaum and Vigfusson (2004) focus on why the DSVAR and

LSVAR for their data gives different impulse responses but do not mention that the impulse

responses from their LSVAR are quite different from the LSVAR in Gali and Rabanal (2004).

As we have shown above, the difference between the results in these papers lies in the difference

in the underlying data and not in the method.

Interestingly, all three of these studies use very similar conceptual measures of pro-

ductivity and Christiano, Eichenbaum and Vigfusson and Gali and Rabanal use very similar
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conceptual measures of hours. The sensitivity of the LSVAR results to seemingly minor dif-

ferences in measuring productivity and hours raises some doubts about the reliability of the

LSVAR procedure for drawing inferences about underlying models.

6. Testing the LSVAR Procedure

Our test of the LSVAR procedure has two steps. First, apply the Akaike criterion

to data generated from our model and retain those sequences for which the Akaike criterion

picks a lag length less than or equal to 4. Then, run the LSVAR specification with 4 lags on

the retained sequences. (We found that for almost all sequences from our model standard lag

length tests do not detect the need for more than 4 lags.)

As in the DSVAR test, we could, of course, choose the sequence of shocks in the

model to replicate the series in the 4 datasets exactly. Clearly, the LSVAR specification will

reproduce Figures 8a, 8b, 8c, and 8d exactly. Again, this analysis leaves open the possibility

that the sequences of shocks our model needs to produce these datasets is very unlikely. To

address this possibility we treat the baseline model as the data-generating process and draw a

1,000 sequences of the same length as our data length, namely 180 quarters. In the left panel

of Figure 9 we display the histogram of the impact coefficients of the estimated LSVAR over

the 1,000 sequences. The histogram shows that the distribution of the impact coefficients is

bimodal with a substantial subset of the sequences having very negative coefficients. In the

right panel of Figure 9 we plot the middle 95% range of impulse response coefficients. We

see that the range of impact coefficients for a one percent shock to total factor productivity

is huge: it ranges from −2.5% to 2%.

To get some understanding for why the histogram for the impact coefficient is bimodal
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recall from (5) that this coefficient is given by

(19) A0(2, 1) =
ω12 − fλp
ω11 − f 2λ

where the parameters ω11, ω12, f and λ are estimated from a VARwith 4 lags. Each simulation

produces different values of these parameters. It turns out that typically the denominator

of (19) is very small and that across runs the numerator switches signs. This feature of the

simulations induces a bimodal distribution.

Notice just how large is the range over impact coefficients. Our real business cycle

model has an impact coefficient of only .44 which is less than one—fifth of the upper end of

this range. Notice that this range also includes —.44. That is, the range includes impact

coefficients from models in which labor falls in response to a technology shock by as much as

it rises in a real business cycle model. Actually, it includes models in which labor fall almost

six times as much as it rises in a real business cycle model.

In Figure 10 we plot the mean impulse response and the mean of the bootstrapped

confidence bands. It is clear that a wide range of theoretical impulse responses are consistent

with the estimated impulse responses from the LSVAR.

We argue that this procedure is not useful for distinguishing sticky price models from

flexible price models including real business cycle models. In sticky price models the respon-

siveness of hours to a technology shock depends on the extent to which the monetary policy

accommodates the shock. For example, Gali, Lopez-Salido and Valles (2003) construct a

simple sticky price model in which the monetary authority follows a Taylor rule and show

that hours rise in response to a technology shock. They also show that if monetary policy is
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not all accommodative, hours fall in response to a technology shock. The range of responses

for hours to technology shock in sticky price models is well within our 95% range.

We next ask, suppose for each of the 1,000 sequences a researcher tested the hypothesis

that the impact coefficient of the LSVAR equaled the model’s impact coefficient at the 5%

significance level. We find that such a researcher would essentially never reject this hypothesis.

We then ask, suppose the researcher tested the hypothesis that the impact coefficient of the

LSVAR equaled the negative of the model’s impact coefficient at the 5% significance level.

Such a researcher would also essentially never reject this hypothesis either. We interpret these

findings as suggesting that at least with data of the kind that comes out of our model, the

LSVAR is incapable of differentiating between models with starkly different impulse response

functions.

A. Is Short Sample Length the Only Problem for the LSVAR Procedure?

The reason we find the LSVAR procedure useless for guiding theory is that the confi-

dence bands contain the impulse responses of most models we want to discriminate between.

Suppose then we consider a very long sample of length 100,000 so that the confidence bands

are so narrow that they essentially lie right on top of the impulse response. Will the LSVAR

procedure with 4 lags deliver an impulse response which is quite close to the model’s impulse

response? In Figure 11a we report on the impulse responses of an LSVAR with 4 lags for this

long sample together with the model’s impulse response. We see that the impulse response

of the LSVAR is quite far from the model’s impulse response4. In Figure 11b we show how

4It is worth noting that for the LSVAR the small sample bias is large. The size of this bias can be seen by

comparing the estimates of the impulse response for the 4 lag specification for the short and the long data

samples. Specifically, compare the mean impulse response in Figure 10 for the short sample to the impulse

response for p = 4 in Figure 11 for the long sample. We see that these responses are very different. For
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the impulse responses from the LSVAR for lag lengths varying from p = 4 to 200. As with

the DSVAR, we see that the impulse response from the LSVAR is a good approximation to

the model only for extremely long lag lengths.

Some intuition for these results can be obtained from Propositions 1 and 2. Notice that

these propositions hold for any quasi-differencing parameter α ∈ [0, 1). Hence they include the

level SVAR in which α = 0. From Proposition 1 we see that the autoregressive representation

of Xt = (∆(yt/lt), lt) is infinite order with autoregressive coefficients that satisfy

(20) Bmj =MBmj−1 for j ≥ 2

where the matrixM has eigenvalues equal to λ1 = 0 and λ2 = (γk−γlφk/φl− θ)/(1− θ). For

our parameter values λ2 = .97 and hence the autoregressive representation of Xt is poorly

approximated with an autoregression with a small number of lags. Proposition 2 also applies

so that typically the impulse responses of the LSVAR procedure are different from those of

the model.

The reason the LSVAR needs such long lag lengths also seems to be driven by the

role of capital. In that vein, in Figure 12 we show that only when the capital essentially

depreciates completely every period does the LSVAR with 4 lags give a good approximation

to the model’s impulse response. An analytic way of seeing the importance of capital is to

note in a version of the model without capital (obtained by setting the capital share parameter

θ = 0) the associated M in (20) is identically zero so that the autoregressive representation

of Xt has only lag.

example, in the long sample the impact coefficient is more than 3 times as large as that in the short sample.
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7. State Space Approaches as Alternatives

The SVAR methodology holds out the promise of being able to identify technology

shocks and their effects with minimal use of economic theory. We have shown that, unfortu-

nately, the specification of SVARs used in practice does not nest most existing business cycle

models and that this misspecification leads researchers to draw mistaken inferences. Here we

discuss alternative approaches to SVARs to identifying impulse responses to various shocks

in the data.

What will clearly not work is to simply add many more lags to the original VAR.

Since actual data is not 100,000 observations long, but is less than 200 observations long, it is

impossible to accurately estimate lags long enough to get reasonable approximations to the

actual impulse response functions.

Another way to proceed might be to expand the list of variables in the VAR to include

ones like capital. Unless this approach is guided more specifically by the theories under

consideration it is likely to be haphazard. Our conjecture is that this approach will ultimately

just bury the most obvious problems but leave more subtle problems intact. We think that

a much safer and transparent approach is to use economic theory to guide the specification.

In this vein, the following procedure to specifying models seems the most obvious.

First, write down a class of models for which the procedure is supposed to apply. Second,

work out the statistical representations implied by the models. Third, figure out someminimal

set of identifying restrictions needed to identify the key parameters of the models. In practice,

of course, this third step is the difficult one.
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As we have shown standard business cycles such as ours have state transition equation

(21) St+1 = FSt +Gεmt+1

and the observation equation

(22) Xt = HSt + ut.

The system (21) and (22) is a standard linear state space system that is easy to

estimate by standard statistical methods. In our procedure the parameters of F, G and H all

come from the original structural parameters of the model and these matrices have many cross

equation restrictions that arise from the underlying economics. One way to proceed which

imposes fewer restrictions than the theory would be to apply only the minimum needed to

identify the parameters of interest. We could then estimate the system using, say, U.S. data

and calculate the impulse responses from the estimated system.

Of course, if we wanted to claim that the impulse responses from such a procedure

applied to a broad class of models, including models with sticky prices, models with financial

frictions and so on, then we would have to find a state space representation and a set of

identifying assumptions that nested the class of models of interest.

An approach that is closely related to the one we have just discussed is the business

cycle accounting approach of Chari, Kehoe and McGrattan (2003).
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8. Related Literature

In terms of the literature, critiques of the SVAR approach are not new. These cri-

tiques can broadly be divided into critiques based on invertibility problems, critiques using

economic models as tests, critiques of circular specification searches, and critiques based on

deep inference problems when the parameter spaces are infinite-dimensional.

In a pair of insightful but often neglected papers, Hansen and Sargent (1980 and

1991) pointed out that invertibility problems may plague the type of Box-Jenkins methods

that underlie the SVAR literature. They showed that interesting economic models could

have noninvertible moving average representations and that this noninvertibility could cause

problems for simple statistical procedures that do not use enough economic theory. Lippi

and Reichlin (1993), along the lines of Hansen and Sargent (1991), analyzed how invertibility

problems could lead to mistaken inferences in the Blanchard-Quah procedure. Blanchard

and Quah (1993) argue that while such problems may arise for some examples, they typically

have not arisen in most applied models. They also argue that even when they do arise the

resulting inference problems may not be quantitatively large. As we have argued, our critique

is very different from the Hansen—Sargent invertibility critique.

Cooley and Dwyer (1998) lucidly critiqued the SVAR procedure using economic models

as tests in a manner broadly similar to ours. One important difference between our work and

theirs is that we use estimated models that account well for the U.S. data and they use

simpler expository models. Another difference is that we focus on the main conclusion of

the recent SVAR literature, namely that technology shocks lead to a fall in hours, while they

focus on a variety of other possibly mistaken inferences.

Erceg, Guerrieri, and Gust (2004) also tested the SVAR procedure using economic
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models. In contrast to our focus on mistaken inferences, their main focus is on small sample

bias in SVARs and they conclude that the small sample bias problem in models is modest.

Most importantly, they conclude, (p.4), “Overall, Gali’s methodology appears to offer a

fruitful approach to uncovering the results of technology shocks...” We conclude the opposite.

Uhlig (2004) criticizes the circularity of searching over specifications until a certain

pattern is found and then arguing that the data showed that finding such a pattern is strong

evidence for a certain theory.

Faust and Leeper (1997) discuss inference problems in infinite-dimensional VARs that

underlie the SVAR approach. They argue that (p. 345) “unless strong restrictions are applied,

conventional inferences regarding impulse responses will be badly biased in all sample sizes.”

They show that under a long-run identifying scheme, any test of the magnitude of an impulse

response coefficient has a significance level greater than or equal to its power. Faust and

Leeper’s results build on a pair of seminal papers by Sims (1971, 1972) who showed that in

infinite-dimensional spaces, unless severe restrictions are imposed on the parameters, standard

methods cannot be used to make asymptotically valid confidence statements.

9. Conclusion

Simple data analysis techniques which reliably point us towards quantitatively promis-

ing models can be very useful in applied economic analysis. We have found, however, that the

procedure used in the existing technology—focused SVAR literature is not a reliable technique.

We have shown that the moving average representations generated by both the differenced

and the level SVARs are misspecified with respect to the very business cycle model for which

the approach is intended to shed light. Moreover, we how shown that this misspecification
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leads to quantitatively large mistaken inferences.

Our paper reinforces the point made by Hansen and Sargent (1991) over a decade ago:

the main problem with the SVAR approach is that it uses too little a priori economic theory.

Without more economic theory it seems to be impossible to determine the answer to basic

issues like the ones discussed here: For what questions will a short lag length be reasonable?

What variables should we include in the VAR?

Elsewhere, Chari, Kehoe, McGrattan (2003), we have argued that it is both easier and

more robust to use an alternative approach called business cycle accounting. This approach

has the same goal of the SVAR, namely to quickly shed light on which of a class of models is

promising, but it suffers from fewer of the shortcomings. This approach avoids the problems

of the SVAR approach by building in enough economic theory to answer the questions it

poses.

Another approach, which uses more economic theory than that used in the SVAR

procedures but less than the theory used in the business cycle accounting approach, is also

likely to be fruitful. Such an approach begins by recognizing that business cycle models have

state space representations. This alternative approach involves three steps. The first is to

write down a state space representation that nests the class of models of interest. The second

is to prove a theorem that a common minimal set of identifying assumptions applies to all

models in this class. The third is to estimate the resulting state space model. Either of these

alternative approaches seems more likely to lead to progress than the SVAR approach.
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Table 1
Parameters of Vector AR(1) Stochastic Process for the Models†

Estimated Using Maximum Likelihood with Data on
Output, Labor, Investment, and Consumption

P =

[

0 0
0 ρ

]

Q =

[

σz 0
0 στ

]

, Mean(st) = [log z̄, τ̄ ]

Parameter Estimates

Source of Hours per Capita log z̄ τ̄ ρ σz στ

Prescott and Ueberfeldt (2003) .00302 .274 .938 .00581 .00764
(.00032) (.00536) (.00727) (.00032) (.00035)

Francis and Ramey (2004) .00293 .301 .937 .00556 .00760
(.00033) (.00383) (.00986) (.00031) (.00048)

Christiano et al. (2004) .00397 .210 .955 .00633 .01011
(.00037) (.00408) (.00440) (.00031) (.00036)

Gali and Rabanal (2004) .00369 .237 .969 .00888 .00983
(.00042) (.00469) (.00280) (.00035) (.00039)

† Numbers in parentheses are standard errors.
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Figure 1

Impulse Response of Hours to Technology Shock Using the DSVAR
Procedure with U.S. GDP and Total Hours per capita



R
es

po
ns

e
to

1%
T

ec
hn

ol
og

y
In

no
va

tio
n

R
es

po
ns

e
to

1%
T

F
P

S
ho

ck

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0

0.1

0.2

0.3

0.4

0.5

Figure 2

Model Impulse Response of Hours to Technology Shock
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Figure 3

Bounds for 95% of Impulse Responses of Hours to Technology Shock
Across 1000 Applications of the DSVAR Procedure to Model Data and

Histogram of Impulse Response in Impact Period
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Figure 4

Mean Impulse Response of Hours (solid line) and Mean of 95%
Bootstrapped Confidence Bands (dashed lines) Averaged Across 1000

Applications of the DSVAR Procedure to Model Data
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Series of Length 100,000 from the Model
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Series of Length 100,000 from the Model
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Series of Length 100,000 from the Model
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Impulse Responses of Hours for the Model with Various Depreciation
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AR Lags Applied to Time Series of Length 100,000 from the Model



R
es

po
ns

e
to

1%
T

ec
hn

ol
og

y
In

no
va

tio
n

R
es

po
ns

e
to

1%
T

F
P

S
ho

ck

0 2 4 6 8 10 12

-1.5

-1

-0.5

0

0.5

-5

-4

-3

-2

-1

0

1

2

Figure 8a

Impulse Response of Hours to Technology Shock Using the LSVAR
Procedure with Dataset of Francis and Ramey
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Figure 8b

Impulse Response of Hours to Technology Shock Using the LSVAR
Procedure with Dataset of Christiano, Eichenbaum, and Vigfusson
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Figure 8c

Impulse Response of Hours to Technology Shock Using the LSVAR
Procedure with Dataset of Gali and Rabanal
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Figure 8d

Impulse Response of Hours to Technology Shock Using the LSVAR
Procedure with GDP and Total Hours per capita
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Bounds for 95% of Impulse Responses of Hours to Technology Shock
Across 1000 Applications of the LSVAR Procedure to Model Data and

Histogram of Impulse Response in Impact Period



R
es

po
ns

e
to

1%
T

ec
hn

ol
og

y
In

no
va

tio
n

R
es

po
ns

e
to

1%
T

F
P

S
ho

ck

0 2 4 6 8 10 12
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 10

Mean Impulse Response of Hours (solid line) and Mean of 95%
Bootstrapped Confidence Bands (dashed lines) Averaged Across 1000

Applications of the LSVAR Procedure to Model Data
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Figure 11a

Impulse Responses of Hours for the Model and Those Obtained Using
the LSVAR Procedure with Four AR Lags Applied to Time

Series of Length 100,000 from the Model
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Impulse Responses of Hours for the Model and Those Obtained Using
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Series of Length 100,000 from the Model
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Impulse Responses of Hours for the Model with Various Depreciation
Rates and Those Obtained Using the LSVAR Procedure with Four
AR Lags Applied to Time Series of Length 100,000 from the Model
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