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1. Introduction
In this paper, we consider a class of infinitely repeated games with imperfect public

monitoring. We look at symmetric perfect public equilibria with memory k: equilibria in

which strategies are restricted to depend only on the last k observations of public signals.

Define Γk to be the set of payoffs of equilibria with memory k. We show that for some

parameter settings, Γk = Γ∞ for sufficiently large k. However, for other parameter settings,

limk→∞ Γk 6= Γ∞. This last result can be obtained for any value of the discount factor.
We analyze this problem for two reasons. First, typical analyses of repeated games

allow strategies to depend arbitrarily on the past. In many real-life situations, players may

not be able to use strategies that are so complex. It is useful to know what extent the standard

analysis of repeated games with imperfect public monitoring provides a useful approximation

to settings with long, but not infinite, memory.

Second, in recent work, Mailath and Morris (2000) consider the robustness of equilibria

in games with imperfect public monitoring when they introduce noise in the monitoring

scheme. They find that equilibria with finite memory survive this type of perturbation. This

too makes it natural to ask whether the set of equilibrium payoffs for equilibria with infinite

memory is well-approximated by the set of payoffs for equilibria with long but finite memory.

Our arguments are similar in spirit to those of Bhaskar (1998). He shows that in an

overlapping generations economy, with one player in each cohort, there is a unique equilibrium

to the Hammond transfer game when players know only a finite number of periods of past

play. Our results extend those of Bhaskar to a class of repeated games with imperfect public

monitoring, at least for the case perfect public equilibria.

In what follows, we present a class of repeated games with imperfect public monitoring,

and define a symmetric public equilibrium with finite memory. We prove a non-convergence

result and a convergence result. We discuss the robustness of our results to allowing for

bounded recall, and to changing the equilibrium definition to sequential equilibrium.

2. A Class of Games
We describe a class of repeated games with imperfect public monitoring.
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A. Stage Game

Consider the following stage game. There are two players. Player 1 and player 2’s

action sets are both {C,D}. Player i0s payoffs are given by:

y − c, if ai = C

y, if ai = D

The variable y is random, and has support {0, 1}. The density of y depends on action choices:

Pr(y2 = 1|a1 = a2 = C) = p2
Pr(y2 = 1|ai = D,aj = C) = p1
Pr(y2 = 1|a1 = a2 = D) = p0

Throughout, we assume that:

1 > p2 > p1 > p2 − c > p0 > p1 − c

These inequalities guarantee that the probability of receiving a good payoff is increasing in

the number of players that choose C. They also guarantee that both players playing C is

Pareto superior to their playing D, and that both players’ playing D is a unique equilibrium

of the stage game.

B. Information Structure and Equilibrium

The stage is infinitely repeated; players have a common discount factor δ, 0 < δ <

1. We also assume that there is a public randomizing device; specifically, let {θt}∞t=0 be a
collection of independent random variables that are uniformly distributed on the unit interval.

We define θt = (θ0, ..., θt) and yt = (y1, ..., yt).

We assume that player i’s action choices are unobservable, but the outcome of y

is observable to both players. Hence, player i’s history after period t is given by hti =

((ais)
t
s=1, y

t, θt). The public history after period t is ht = (yt, θt). We denote by ys(ht) and

θs(h
t), s ≤ t, the realizations of ys and θs in public history ht. We use the notation (yrs, θrs)

to represent (yt, θt)rt=s.

2



In this world, a strategy for player i is a mapping σi from the collection of possible

histories for player i into {C,D}. A public strategy σi is a strategy which maps any two

histories for player i with the same public history into the same action.

Given these notions of strategies, we restrict attention to symmetric public equilibria,

in which both players use the same public strategy. Thus, an equilibrium is a public strategy

σ such that σ is a player’s optimal strategy, given that the other player is using σ.

C. Finite Memory Equilibria

We are interested in exploring equilibria in which the players’ strategies are restricted

to depend only in a limited way upon histories. A public strategy with memory k is a public

strategy such that σ(ht) = σ(ht0) if yt−s(ht) = yt−s(ht0) and θt−s(ht) = θt−s(ht0), for all s such

that 0 ≤ s ≤ min(k, t)− 1. Thus, the strategy can only depend on (at most) the last k lags
of the public signals. Correspondingly, an equilibrium with memory k is an equilibrium in

which the strategy has memory k. (Thus, definitionally, an equilibrium with infinite memory

is the same as an equilibrium.)1

In any equilibrium, all players receive the same utility. We use the notation Γk to refer

to the set of payoffs delivered by equilibria of memory k. The key propositions that follow

are about the question: does limk→∞ Γk = Γ∞?

3. Equilibrium Payoffs with Infinite Memory
From Abreu, Pearce, and Stacchetti (1990), we know that Γ∞ is a closed interval. It

is also straightforward to show that the minimax payoff in the stage game is p0, which is

also an equilibrium payoff in the stage game. Hence, the lower bound of Γ∞ is given by

vmin ≡ p0/(1− δ).
What about the upper bound, vmax, of Γ∞?We know from APS (1990) that if vmax >

vmin, then the equilibrium that delivers vmax has the form:

σ(ht) = D if for some s ≤ t, ys(ht) = 0 and θs(ht) ≥ π,(1)

1Note that in this definition of an equilibrium with memory k, we have not imposed limited recall on the
players. Hence, players can contemplate using arbitrary functions of past histories, but choose in equilibrium
to use strategies that depend only only on the last k lags of the public signal. In contrast, in a game with
recall limit k, players can only contemplate using strategies that are measurable with respect to what they
have seen in the last k periods. We discuss allowing for bounded recall later in the paper.
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σ(ht) = C otherwise.

Verbally, we can think of two possible phases in this equilibrium: a “co-operate” phase and

a “non-cooperate” phase. Players start in the co-operate phase, and stay there until they

observe y = 0 and a sufficiently high realization of θ. Then they start playing a permanent

“non-cooperate” phase in which they both play D forever.

The continuation payoff in the cooperate phase is vmax, and the continuation payoff in

the non-cooperate phase is vmin. Hence, we can see that:

vmax = p2(1− c + δvmax) + (1− p2)[−c+ δ(πvmax + (1− π)vmin)](2)

For the strategy to be an equilibrium, it must be true that in the non-cooperate phase, players

prefer to play D rather than deviate to C

vmin ≥ p1[1+ δvmin] + (1− p1)δvmin − c

but this is satisfied trivially because (p1 − c) < p0. As well, it must be true that in the

cooperate phase, players prefer to play C rather than deviate to D:

vmax ≥ p1(1+ δvmax) + (1− p1)δ[πvmax + (1− π)vmin](3)

Moreover, for vmax to be the maximal element of Γ∞, the latter inequality must be an

equality. Otherwise, we can increase π and thereby increase the value of vmax implied by the

flow equation (2), without violating the equilibrium requirement (3).

We can restate the above argument as follows. Given (p2, p1, c), let (vmax, vpun) be the

solutions to the two equations:

vmax = p2(1+ δvmax) + (1− p2)δvpun − c
vmax = p1(1+ δvmax) + (1− p1)δvpun

Since p2−c < p1, vpun < vmax. Hence, Γ∞ = [vmin, vmax] if and only if vpun ≥ vmin. It is tedious
but simple to show that this is equivalent to assuming that p2−p1−c+δp1c−δp0p2+δp1p0 > 0.
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4. Finite Memory: A Non-Convergence Result
Our first result is to show that for there exists an open set of parameters such that

limk→∞ Γk 6= Γ∞. In fact, as the following proposition shows, if p1 is sufficiently close to p2,
always playing D is the only equilibrium with memory k, for any finite k.

Proposition 1. If:

p1 > 0.5(p2 + p0)(4)

Γk = {p0/(1− δ)} for all k.

To understand the logic of this proposition, consider two different histories of length

k of the public signal y:

(yt−k, ..., yt−1) = (0, 1, 1, 1..., 1)

(y0t−k, ..., y
0
t−1) = (1, 1, 1, 1, .., 1)

To support an equilibrium other than always playingD, it must be a continuation equilibrium

for players to play D after the first type of history, and play C after the second type of

history. But the difference between these histories vanishes after this period. Hence, the

players’ continuation payoffs are the same function of yt after both these histories. In order to

generate these two different continuation equilibria, we need to be able to choose continuation

values v1 and v0 so as to make it an equilibrium to choose C or choose D. The essence of the

proposition is that if p1 > (p2 + p0)/2, this cannot be done.

Proof. The first part is that to show that the only equilibrium with memory 1 is always

choose D for all public histories. The second part is to assume inductively that the only

equilibrium with memory (k − 1) is to always choose D. Then, we show that, given an

equilibrium with memory k, the equilibrium strategies must be independent of the kth lag

of the public signal. Hence, an equilibrium with memory k must be an equilibrium with

memory (k − 1), and so, by induction, the only equilibrium with memory k, for any k, is to

always choose D.

Part 1: If always playing D is not the only equilibrium with memory 1, then there

exists some period t such that if σ(ht−2, yt−1, θt−1) = C and σ(ht−20, y0t−1, θ
0
t−1) = D. Define
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v1,t+1 to be the expected continuation payoff in period (t+ 1) if yt = 1, and v0,t+1 to be the

expected continuation payoff if yt = 0 (where the expectations are over θt).

Then:

p2[1+ δv1t] + (1− p2)δv0t − c ≥ p1[1+ δv1t] + (1− p1)δv0t
(1− p0)δv0t + p0[1+ δv1t] ≥ p1[1+ δv1t] + (1− p1)δv0t − c

The first inequality guarantees that C is an equilibrium. The second inequality guarantees

that D is an equilibrium. Together, these inequalities imply that:

(p2 − c− p1)/(p2 − p1) ≥ δ(v0t − v1t) ≥ (p1 − p0 − c)/(p1 − p0)

But this implies that:

1− c/(p2 − p1) ≥ 1− c/(p1 − p0)

or:

(p2 − p1) ≥ (p1 − p0)

which violates p1 > (p2 + p0)/2.

Part 2: Now, we show that in any equilibrium with memory k, the strategies must be

independent of the kth lag of the public signals. Suppose not, and:

σ(yt−1t−k, θ
t−1
t−k) = C

σ(yt−10t−k , θ
t−10
t−k ) = D

(yt−1t−k−1, θ
t−1
t−k−1) = (yt−10t−k−1, θ

t−10
t−k−1)

where (yrs , θ
r
s) = (yi, θi)

r
i=s. Define:

v1 = Eθtvt(y
t−1
t−k, θ

t−1
t−k, yt = 1, θt)

v0 = Eθtvt(y
t−10
t−k , θ

t−10
t−k , yt = 0, θt)

It follows that if playing C is weakly preferred to D at history (yt−1t−k, θ
t−1
t−k), then:

p2(1+ δv1) + (1− p2)δv0 − c ≥ p1[1+ δv1] + (1− p1)δv0.
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Similarly, if playing D is weakly preferred to C at history (yt−10t−k , θ
t−10
t−k ), then:

(1− p0)δv0 + p0δv1 ≥ p1[1+ δv1] + (1− p1)δv0 − c.

Together, these inequalities imply that p2 − p1 ≤ p1 − p0, which is a contradiction.
The proposition then follows inductively. 2

Note that there is an open set of parameters such that vpun ≥ vmin and p1 > (p2+p0)/2;
for this set of parameters, limK→∞ ΓK 6= Γ∞. It is worth emphasizing too that if p1 >

(p2 + p0)/2, ΓK = {p0/(1− δ)}, regardless of the size of δ.

5. Finite Memory: Convergence
We now show that if p1 ≤ (p2 + p0)/2 and vpun > vmin, then there exists K∗ such that

if k ≥ K∗, then Γk = Γ∞.

A. A Convergence Result for Maximal Payoffs

To show this, we first show that for K sufficiently large, we can construct an equilib-

rium with memory K that has payoff vmax.

To do so, consider the following strategy with memory K. The strategy is of the form:

σmaxK (ht) = D if θt−k∗+1(ht) ≥ πK , where(5)

k∗ = min
©
k ∈ {1, ..., K} : yt−k+1(ht) = 0

ª
σmaxK (ht) = C otherwise.

Again, it is natural to divide play into a cooperate phase, and a (temporary!) non-cooperate

phase.

When can we find an equilibrium of this type that delivers payoff vmax? It must be

true that:

vmax = p2(1+ δvmax) + (1− p2)δv0pun − c

where v0pun is given by

v0pun = πKvmax + (1− πK)XK(6)

XK = (p0 + (1− p0)δv0pun)
K−1X
i=1

(p0δ)
i + δKpK0 vmax(7)
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For this strategy to be a viable equilibrium, we need to verify three things. First, we

need to make sure that the players find it weakly optimal to play C in the cooperate phase

of the equilibrium. Note, though, from the definition of vpun, that vpun = v0pun and also that:

vmax = p1(1+ δvmax) + (1− p1)δvpun

and so in the cooperate phase, players are indifferent between playing C or not.

Second, we need to verify that players are willing to playD in the non-cooperate phase

of the equilibrium. Consider a history ht−1 = (yt−1, ..., yt−K) in which yt−k∗ = 0, θt−k∗ > π,

and yt−k = 1 for all k < k∗. The equilibrium payoff in this history is determined by the value

of k∗, and is equal to XK−k∗+1, where Xj is as defined in (7). Thus, for each k∗ if playing D

is weakly preferred to C it must be the case that

XK−k∗+1 ≥ p1(1+ δXK−k∗) + (1− p1)vpun − c,

where X0 ≡ vmax. Note that XK−k∗+1 satisfies the recursive equation:

XK−k∗+1 = p0(1+ δXK−k∗) + (1− p0)vpun,

Subtracting the recursion from the incentive condition yields

(p1 − p0)(1+ δXK−k∗ − δvpun) ≤ c.

Thus, to make sure that players want to play D in the non-cooperate phase, we must verify

the above inequality for all k∗ ∈ {1, ..., K}.
We verify this inequality as follows. We know that:

p2(1+ δvmax) + (1− p2)δvpun − c = p1(1+ δvmax) + (1− p1)δvpun,

or, equivalently:

δ(vmax − vpun) = c/(p2 − p1)− 1

It is trivial to see that Xk is decreasing in k. Hence, it follows that for any k∗:

(1+ δXK−k∗ − δvpun)
≤ (1+ δX0 − δvpun)
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= (1+ δvmax − δvpun) (by definition of X0)
= c/(p2 − p1)
≤ c/(p1 − p0)

Thus, because (p2−p1) ≥ (p1−p0), players are willing to play D throughout the punishment
phase.

Finally, we need to find K so that 0 ≤ πK. Again, XK is decreasing in K and hence

we can conclude that

πK =
vpun −XK
vmax −XK

is increasing in K. Furthermore, note that

limK→∞XK = [p0 + (1− p0)δvpun] /(1− p0δ)
=

(1− δ)
(1− p0δ)

µ
p0
1− δ

¶
+
(1− p0)δ
(1− p0δ)vpun,

and so limK→∞XK is a convex combination of p0/(1 − δ) and vpun. This implies that if
vpun > p0/(1− δ), then there exists K∗, such that for all K ≥ K∗, XK < vpun.

This analysis verifies the following proposition.

Proposition 2. If (p2 + p0)/2 ≥ p1, and vpun > vmin, then there exists K∗ such that for all

K ≥ K∗, the maximal element of ΓK is vmax.

The crux of this proposition is that a K-period non-cooperate phase, if K ≥ K∗, is

sufficiently harsh to induce cooperation. Crucially, as long as (p2 + p0)/2 ≥ p1, players are

willing to play non-cooperate.

B. A Convergence Result for the Equilibrium Payoff Set

We have seen that under the conditions of Proposition 2, the maximal element of

ΓK is vmax for sufficiently large K. The minimal element of ΓK is vmin for any K. But is

ΓK connected or are there holes in ΓK? When K = ∞, we can use the initial draw of the
public randomization device to create any payoff between the endpoints of Γ∞. But with

finite memory, this permanent randomization between equilibria is no longer possible. In this
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subsection, we show that when the conditions of proposition 2 are satisfied, ΓK = Γ∞ for K

sufficiently large.

Suppose that the conditions of proposition 2 are satisfied, and K > K∗. Let γ ∈ Γ∞,
and consider the following specification of strategies. Let τ ∈ {0, 1, 2, ...,∞} be such that

p0(1− δτ )
1− δ + δτvmax ≤ γ < p0(1− δτ+1)

1− δ + δτ+1vmax.

Let πτ such that

πτ

·
p0(1− δτ )
1− δ + δavmax

¸
+ (1− πτ )

·
p0(1− δτ+1)
1− δ + δτ+1vmax

¸
= γ.

Denote the strategy that supports payoff vmax by σmaxK∗ . Then we can define the strategy σγ

that supports payoff γ as follows.

σγ(y
t−1, θt−1) = D for all t < τ .

σγ(y
τ−1, θτ−1) = C if θτ−1 ≤ πτ

σγ(y
τ−1, θτ−1) = D if θτ−1 > πτ

For t ≥ τ ,

σγ(y
t, θt) = σmaxK∗ (ytτ , θ

t
τ ) if θa−1 ≤ πτ

σγ(y
t, θt) = σmaxK∗ (ytτ+1, θ

t
τ+1) if θa−1 > πτ

The basic idea of this strategy is that the players play D through period (τ − 1). Then, in
period t, they switch to playing σmax if θτ−1 is low. Otherwise, they play D in period t, and

switch to playing σmax in period (t+ 1).

By construction, σγ delivers payoff γ. We need to verify that σγ is indeed an equi-

librium with memory K. Note that in the histories in which the strategy specifies that the

players choose D, their actions have no effects on future payoffs. Hence, playing D is weakly

optimal. Also, we know that σmaxK∗ is an equilibrium, so that playing according to σmaxK∗ is

weakly optimal whenever the strategy makes this specification.

We still need to verify that σγ is a strategy with memory K. Since σmaxK∗ is a strategy

with memory K∗ < K, it follows that σmax(ytτ , θ
t
τ ) = σmax(y

t
τ+1, θ

t
τ+1) for t ≥ (τ +K∗). Thus,

the realization of θτ does not affect play after period (τ + K∗), and σγ is a strategy with

memory K > K∗.
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6. Discussion
In this section, we discuss the robustness of our results to two different perturbations

of the setup. First, we consider what happens if players have bounded recall. Second, we

consider whether our results for perfect public equilibrium extend to sequential equilibrium.

A. Bounded Recall

Throughout, we have assumed that players have perfect recall. This means that,

while equilibrium strategies are required to be functions of k lags of past history, players can

contemplate deviations from equilibrium play that are arbitrary functions of past history. In

contrast, if players’ recall is limited, then they can only contemplate using strategies that are

functions of the last k periods of history.

Let Γbrk be the set of perfect public equilibrium payoffs when players have recall limit

k. Then, we can demonstrate a result analogous to Proposition 1: if (p2 + p0)/2 < p1, then

Γbrk = {p0/(1− δ)} for all k. The proof is identical to that of Proposition 1. Intuitively, in the
proof of Proposition 1, we eliminate the possibility of other equilibria by contemplating the

possibility of players’ deviating to strategies consistent with bounded recall.

We do not have a direct analogy to Proposition 2. However, it is simple to see that

Γbrk ⊇ Γk (because there are fewer possible deviations with recall k). Hence, we know that,

under the assumptions of Proposition 2:

lim
k→∞

Γbrk ⊇ Γ∞

B. Sequential Equilibrium

Following much of the literature on repeated games with imperfect public monitoring,

in this paper we use perfect public equilibrium as the equilibrium concept. In such an equi-

librium, players’ strategies are a function only of public history. In contrast, in a sequential

equilibrium, players’ strategies can be arbitrary functions of both public and private history.

Define a sequential equilibrium with memory k to be a sequential equilibrium in which a

player’s equilibrium strategy is a function of k lags of private and public history. Let Γsek de-

note the set of payoffs of symmetric sequential equilibria with memory k. It is straightforward

to see that Γsek ⊇ Γk; we know from APS (1990) that Γse∞ = Γ∞.
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Proposition 1 does not extend to sequential equilibria: rather remarkably, Γse1 = Γ∞

for any parameter settings.2 Consider any element of Γ∞. From results in APS(1990), we

know that it can be supported as an equilibrium payoff by a public strategy of the form:

σ(yt, θt, (ai)
t) = D if θ0 ≥ π OR

if θt ≥ π and yt = 0
= C otherwise

Then, consider the following strategy:

σ∗(yt, θt, (ai)t) = D if ait = D OR yt = 0 and θt ≥ π
= C otherwise

Note that σ∗ is a strategy with memory 1. Our goal is to show that σ∗ is a symmetric

sequential equilibrium with the same payoff as σ.

To see this, define the following function:

Φ(yt, θt; σ) = σ(yt, θt, σ(yt−1, θt−1))

to be a player’s actions as a function of the public history, given he uses σ. The definition of

σ∗ guarantees that:

Φ(yt, θt; σ) = Φ(yt, θt; σ∗)

This means that whether player i plays according to σ or σ∗, his actions are the same function

of public history. But this means that if player i uses σ∗ or σ, player j is indifferent between

using σ and σ∗. Since σ is a best response to σ at any history, σ∗ is a best response to σ∗ at

any history, and σ∗ is a sequential equilibrium.

The trick here is that a player’s past action serves as a summary statistic that encodes

whether game play is in a “co-operate” or “non-cooperate” phase. Implicitly, one lag of

private actions encodes the relevant portion of the full public history.

2We thank Stephen Morris for pointing this out to us.
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