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ABSTRACT

This paper develops a forecasting procedure based on a Bayesian method
for estimating vector autoregressions. We apply the procedure to 10
macroeconomic variables and show that it produces more accurate out-of-
sample forecasts than univariate equations do. Although cross-variable
responses are damped by the prior, our estimates capture considerable
interaction among the variables.

We provide unconditional forecasts as of 1982:12 and 1983:3. We also
describe how a model such as this can be used to make conditional pro-
jections and analyze policy alternatives. As an example, we analyze a
Congressional Budget Office forecast made in 1982:12.

While no automatic causal interpretations arise from models like ours,
such models provide a detailed characterization of the dynamic statisti-
cal interdependence of a set of economic variables. That information
may help evaluate causal hypotheses without containing any such hypothe-
ses.

*¥An earlier version of this paper appeared in Econometric Reviews, 1984,
vol. 3, no. 1, pp. 1-100.

The views expressed herein are those of the authors and not necessarily
those of the Federal Reserve Bank of Minneapolis or the Federal Reserve
System.



We approach the analysis of a group of economic time series as
the problem of using a prior joint distribution for the observed values
of the series with future values fo obtain a posterior distribution for
future data conditional on observed data. The methods we suggest are
Bayesian in spirit. We do not, however, attempt to make our prior
distributions fully reflect our personal a priori knowledge and uncer-
tainty. 1Instead we aim at a prior distribution that is easily stan-
dardized and reproduced by other researchers, one that reflects aspects
of prior distributions that are likely to be similar in the work of many
researchers. The posterior distribution produced by our analysis is, of
course, just the likelihood function weighted by the prior probability
density function (p.d.f.). Our methods can be thought of as a more
useful way of reporting the likelihood function to other researchers,
who themselves put little prior probability on regions of the parameter
space that are given low probability by our prior.

We regard conventional methods of developing probability
models for econometric time series as unreliable because they do not
give probabilistic ftreatment to the uncertainty arising from inexact
knowledge of the true mocdel specification. Conventional approaches
produce models that can be helpful adjuncts to judgment in producing
forecasts, but the implied probability distributions about the forecast
that such models generate are almost invariably too optimistic. (The
ideas in these first two paragraphs are discussed at length in Sims 1982
and Litterman 1982.)

Specifying a joint distribution over the hundreds or thousands
of interrelated data points available in most applications is a complex
task. Any explicit joint probability model is likely to contain hidden
implications that we would reject if we confronted them. Yet there is
no joint distribution representing ignorance on which we can rely as
being, in some sense, conservative. For example, if we take a large-
variance joint normal prior on the coefficients of an unrestricted
vector autoregressive model for the data as representing ignorance, we
are in faect putting high probability on models with very large coeffi-
cients. These models produce erratie, poor forecasts and imply explo-

sive behavior of future data. Most researchers would think it unlikely



that such models actually characterize the data, yet the use of non-
Bayesian estimation methods is roughly equivalent to the use of flat
priors that put high probability on these models. Researchers who make
practical use of non-Bayesian methods are foreced to impose arbitrary or
conventional restrictions to simplify their models, eliminating many

parameters that admitfedly are not known to be zero.

Because we (and the profession) have little experience in
specifying joint distributions for these contexts, in this paper we
experiment with a range of prior distributions that is indexed by a set
of eight parameters. We believe that a good standard public prior may
well be some weighted average of the priors indexed by these parame-
ters. Since the priors with all parameters fixed are much more tract-
able than would be a weighted integral over the parameters, we hope to
show that for many purposes good results can be obtained with a single
setting of the parameters, without the extensive explorations that
underlie this paper's results. We will be successful if, over a wide
range of reasonable settings for the parameters, the model generates
similar conditional distributions of the future when given past values
of the variables in the system.

Another possibility 1is that conditional distributions are
sensitive to the parameter setting, but the data are fit well only by
parameter values in a certain narrow range and within this range con-
ditional distributions of the future are all similar. 1In this case,
although we need to search to find a good parameter vector, once one is
found we can use it to generate conditional distributions. The incon-
venience of computing many conditional distributions and then taking

weighted averages of the resulfts would be avoided.

While our explorations are in some ways like fitting the
parameters of a conventional model--we examine various points in a
parameter space and check how well the resulting models reproduce the
data--the motivation and implications of the results are different in
important respects. Our ideal conclusion would be that the parameters
are 1ll-determined--that the fit is similar across a wide range of

parameter settings having similar implications.



Of course, one may ask what we mean by a particular prior
fitting the data well or badly. The Bayesian interpretation of fitting
a prior to data is that we have specified our prior incompletely. The
usual Bayesian formulation has a model for the data, y, specified as a
density function, p(y|e), for y conditional on the parameters, 6, yield-
ing a joint density for y and 6 as the product p(y|6)q(e), where q is a
prior density on 8. We are introducing an extra layer of parameteriza-
tion. We specify a model for the data conditional on the parameters, o,
that we call coefficients. We specify a prior over 8 conditional on a

second set of parameters, =, so that our joint density for the data and
the coefficients conditional on w is p(y|e)q(e|wr). We leave inexplicit
our prior over w, which we need to fully specify the probability distri-
bution of the data. We can in principle integrate p(y|6)q(e|r) with
respect to 8 to obtain the marginal distribution for y given =, which we
could call m(y|w). If we are not directly interested in 8, we can treat
m(y|n) as our model for the data. For a fixed set of observed data, y,
the behavior of m(y|w) as a function of = plays the formal role of a
likelihood function. As usual in such a context, if our prior density
is flat in the region where m(y|=) is large, our posterior p.d.f. for =
will be proportional to m(y|w), and we can think of ourselves as making
inferences about the likely values of w. But since here w is interest-
ing mainly for its implications about 8, we do not focus on estimating

.

Our posterior p.d.f. on 6, for a fully specified prior, is
obtained by first forming the marginal joint p.d.f. for 6 and y by
integrating over 7w and then applying Bayes' rule. In the case where our
prior p.d.f. on w is flat in the relevant region, this leads to a poste-
rior p.d.f. for @ that is a weighted average of those obtained condi-
tional on =, with the relative weight on = given by m(y|w). Thus, when
we measure the fit of the model, we ought naturally to use the relative
size of m(y|w), which is formally much like using the likelihood func-
tion. We will occasionally henceforth refer to m(y|n) as the likeli-
hood, but it is nonetheless a Bayesian notion because it is derived by
taking the coefficients, 6, as a priori random. We will be searching
over values of = to find high values of m(y|w). This looks like a

process of estimating our prior from the data, a most un-Bayesian no-



tion. But we mean this search as an informal numerical integration over
7. Conclusions are meant to be averaged across priors determined by

different w's, with weights given by m(y|w), the measure of fit.

In fact, we shall see that this Bayesian notion of how well a
prior fits the data corresponds to measuring the fit by forecasting
performance. That is, with a particular setting of r and data through
t, we can generate recursively through the sample one-step-ahead fore-
casts of data at t + 1. The measure of fit based on our Bayesian like-
lihood turns out under our assumptions to be a weighted sum of squares
of the one-step-ahead forecast errors. Readers uncomfortable with the
Bayesian terminology can think of what we are doing as using w to index
forecasting procedures, choosing among procedures by how well they
forecast in the sample period. From this perspective, we are taking the
large parameter space indexed by 6 and reducing it to a smaller one
indexed by w. What we are doing is quite different, however, from the
conventional parsimonious parameterization approach, which would use
some subspace of the 6-space, judiciously chosen, as if it were the
whole parameter space. Our approach will, for any given choice of T,
allow the 6 used in forecasting to be more strongly data-determined as
data accumulate through time, with no subspaces of the 8~space ruled

out.

THE FORECASTING PROCEDURE

The procedure we are about to describe in detail was developed
by Litterman (1980a,b; 1982) and Sims (1980, 1982). Although here we
describe the procedure in general terms, the reader might find it help-
ful to remember that later we will apply it to a specific set of monthly
data--ten variables measuring output, prices, money, federal government
revenues and outlays, stock prices, interest rates, the value of the
dollar, the flow of total nonfinancial debt, and the change in business
inventories. Observations begin in January 1948 (1948:1) and end in
March 1983 (1983:3). All but two variables are logged; the two excep-
tions are changes in business inventories and the interest rate. All
but three variables are seasonally adjusted; these exceptions are the

interest rate, the stock price index, and the trade-weighted dollar,



none of which shows evidence of a seasonal pattern. (The data are de-
scribed fully in the Appendix.)

We start from an unrestricted, time-varying, m'th-order vector

autoregressive representation for the n-vector, X:

X, = At(L)Xt-1 + C_ + e (1)

t t

where A_(L) is for each t a polynomial of order m in strictly positive
powers of the lag operator, L, and e, is a zero-mean vector of jointly
normal disturbances independent of X, for all s < t. We express our
prior separately for each equation as a distribution over the coeffi-
cients in A and C. In principle we should also treat the variance of £t
as uncertain, but instead we treat it as one of the parameters of our
prior. Our approach can be thought of as imposing fuzzy restrictions on
the equation, sftriking a balance between decreasing variance and in-
creasing bias as the restrictions are tightened. What we do thus has
antecedents in the literature on shrinkage estimation and its Bayesian
interpretation (for example, Hoerl and Kennard 1970; Stein 1974; Shiller
1973; and Leamer 1972, 1978).

The prior is specified as a multivariate normal distribution
for the coefficients of the vector autoregression. We refer to changes
in the parameters of the prior that lead to smaller (or larger) vari-

ances of coefficients as tightening (or loosening) the prior. The prior

means for all coefficients are zero, except for a mean of one at the
first lag of the dependent variable in each equation. Thus, in the
limit as the prior is tightened around its mean, each equation takes the
form of a random walk:

+ ¢

t° (2)

Because most of the variables we use have persistent trends, we always
keep the prior for the initial constant, Cy, in each equation flat in
the relevant region of the parameter space. Therefore, the limiting
form for each equation is essentially a random walk with drift fit to
the data:

g ¥ C* e (3)



While we recognize that a more accurate representation of generally held
prior beliefs would give systems with explosive roots less weight than
is implied by our symmetric distributions around this mean, we doubt
that the gain that could be achieved by abandoning the Gaussian form for
our prior would be worth the price. In particular, the 1likelihood
function for data that are not exploding will be quite clear in its

rejection of roots significantly outside the unit circle.

We denote by 8, the vector obtained by stacking up all the
coefficients in one equation (or row) of the vector autoregression. The
initial vector, eo, is given a multivariate normal prior density func-
tion with mean 8. The covariance matrix of the prior, denoted Ly, is
generated as a function, F, of a vector of prior parameters, w. Thus,

at £t = 0, we have
Zg = F(m) ()
~ N(ayzO)- (5)

We postulate change in the coefficients of the autoregression
over time according to

et z “89t-1 + (1 - ﬂ8)9 + . (6)

The parameter mg controls the rate of decay toward the prior
mean. When it is set to one, as in a number of our experiments, we are
modeling the coefficient variation as a random walk. The random change
in the parameter vector, Uy, 1s assumed to be drawn from a distribution

with zero mean and covariance matrix proportional to 2y, independent of

Et. -1-/

l/An exception is that the variance of changes in the constant
term is kept equal to the variance of changes in the coefficient on the
first own lag rather than set proportional to the effectively infinite
prior variance on the constant term.



The factor of proportionality, Ty which scales Iy to deter-
mine the covariance matrix of Ug s determines the amount of time varia-
tion allowed in the parameter vector.

Having specified the probability model, we apply the Kalman
filter to each equation to obtain recursively posterior modes ;t for et
based on data through t - 1. When we have passed through the full
sample this way, we end up with a value for the likelihood of the sample
and with a full-sample estimate of the parameter vector applying at the

first postsample date.

The Kalman filter is easiest to understand when the prior is
normal with a fixed covariance matrix and the equation disturbance terms
ey have known variance. In practice, of course, we do not know the
equation disturbance variances a priori. Our procedure is to begin by
using 02, .9 times the vector of estimated variances of residuals from
least squares estimates of linear univariate autoregressions of order
six, as 1f it were exactly the vector of variances of equation distur-
bances for the multivariate system. Suppose at t we have a normal prob-
ability distribution for 6., the coefficient vector for the i'th equa-

tion, so that (suppressing i subsecripts)
0.1t ~ N(ey,z.). (7

Here the notation "X|Z" stands for "X conditional on Z," "~" means "is
distributed as," and "t" in the conditioning set refers to all data

observed up to and including date t. Then from (6)
9t+1|t’et ~ N(nset + (1-ﬂ8)5, 1:720] (8)
and from (1)
X, ,|t,e ~ N(Z_8 o2) (9)
E+117 e+ L t+1?

where Z,_4 is the list of right-hand-side variables in (1).

Equations (7)-(9) determine a joint normal distribution for
Xiiqr O¢eq1r 8¢ conditional on data through time t. The Kalman filter 1is
a set of formulas for using this joint distribution to construct the

conditional distribution of 8., 4 given data through t + 1. The same



Joint distribution can also be marginalized to produce the conditional
distribution of X 4 given data through t and the joint p.d.f.'s. To be

specifiec,
Kepr|ZgoXp_ g0 ~ N{Z (mgo, + (1-m5)8, (10)
Z (n8 g+ T O))Zé + 02}.
Let
St = Z(T8Reg * Thg)ZL + ()

be the variance of the one-step-ahead forecast of the i'th component of
Xt+1 using data through ¢t. (Note that i subscripts are now back in

use.) Let

~ ~

Si,6e1 = i a1 - Zylmglye + (1-m)E, ). | (12)
Then the log of the conditional p.d.f. determined by (10) is

2 "2 2
-.5(1og st - ei,t+1/sit] (13)
and the sample log likelihood is the sum over t of the terms given by
(13).

It is not hard to check that if we multiply Z;0 and c? by the
same scalar constant h, then zit will also be multiplied by h for all
t. Furthermore, if I;¢ and c? are multiplied by the same constant, the
equations of the Kalman filter are unaffected, producing the same con-
ditional distribution for ei,t+1|t and therefore the same forecasts and
forecast errors at each t. Nonetheless, the sample log p.d.f. value is
affected by the choice of h, having the form

T-1 > T-1.
L = -.5] z log sy - T logh - ZOEl - 1/(h51t)] (14)

t=0 t=



-0 -

Maximizing (14) with respect to h implies

T-1.
w2
£20 it" 7it
(15)
T-1 T-1
) 2 15
L = -.5[tzolog sy - T log (T =Osit/sit) - T].

Denoting by Ei the geometric mean over t of s?t, we have from (15)

T-1a

L=.5T1og [T 7 &2
t=0

2 =2
it/(sit/si)]' _ (16)
Thus, the sample likelihood (actually the height of the p.d.f. for the
sample conditional on the = parameters) is proportional to a kind of
weighted average of one-step-ahead squared prediction errors. Equation
(16) shows that prediction errors are given smaller weight when the

model gives them a large standard error.

In reporting our results, we give w values without the likeli-
hood-maximizing rescalings. We do so only because we were not computing
the necessary statisties at early stages of the search. At the w values
giving good fits, the values of h were about one, so the implied re-
scalings were not important. This was not true for every = we tried,
however; occasionally h maximized the likelihood far from one, so that
direct interpretation of = as determining implied standard errors of

disturbances and of coefficients at time zero was not appropriate.

We have not seriously explored the potential gains from treat-
ing the equations of the system jointly. Least squares equation by
equation is fully asymptotically efficient for an unconstrained vector
autoregression because the same variables appear on the right-hand side
of each equation. The Bayesian posterior mode is not correctly captured
by single-equation methods, however, even if priors are normal and
independent across equations, unless the prior covariance matrices are
the same multiple of equation disturbance wvariance in each equation.
Furthermore, in a system as large as the one we examine (with 10 vari-
ables), there are many (55) free parameters in the disturbance covari-
ance matrix, all of which affect the posterior distribution. By impos-
ing an informative prior on the 600 coefficients on lagged variables



-10 -

while using a flat prior on the 55 parameters of the covariance matrix,
we are probably missing an avenue for improving reliability of these

methods. 2/

The single-equation measures of fit that emerge naturally from
the Kalman filter have a multivariate analog, but it cannot be computed
without using a multivariate version of the Kalman filter. We have
therefore put primary emphasis on a different class of multivariate
measures of fit, the log-determinants of matrices of cross-products of
k-step-ahead, out-of-sample forecast errors. The likelihood measure of
fit would differ from one based on the determinant of the cross-product
of one-step-ahead forecasts mainly in weighting the errors by the in-

verses of their conditional variances.

The log-determinants of the matrices of summed cross-products
of k-step-ahead, out-of-sample forecast errors that we rely on as our

primary measures of fit are defined by

~

X

50k 7 tReer T Foak tn
T . ~

Ek B z (s s+k sss+k) (18)
s=1

k-step-ahead log-determinant = log (|E.|). (19)

Eight parameters determine the general form of our joint den-
sity function for data and coefficients. The parameters and their roles

are as follows:

2/ We could parameterize the model initially in recursive form,
with the j'th equation expressing X:+ as a linear function of lagged
¥ 's and current X;i's for i < j gnd with the covariance matrix of
equation disturbances specified as diagonal. In such a model, single-
equation procedures would coincide with multiple-equation procedures
because of the diagonality of the disturbance matrix, and most of the
free parameters of the covariance matrix of residuals would become
coefficients on right-hand-side variables. The difficulty with this
approach is that normal prior distributions on coefficients in such a
recursive system cannot be chosen to treat variables symmetrically. The
potential advantages of including contemporaneous relations among dis-
turbances in the prior distribution are great enough, however, to en-
courage the exploration of this approach.
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Parameter What It Controls

T Relative tightness on own lags

g Relative tightness on lags of other variables
m3 Relative tightness on constant term

Ty Differential tightness among other variables
5 Overall tightness

g Looseness on sums of coefficients

Lt Tightness on time variation

g Rate of coefficient decay toward prior mean

i
fore increased tightness. The opposite holds for Tg. More precise

For T4 through g and Tery smaller w. means smaller variance and there-

definitions of the w's are given below.

Let the i'th component of X, xi, have this scalar representa-

tion:
x5 = ai x1 + ai x1 + + ai x1
£ 7 71,171 1,27t-2 T 1,m t-m
i 2 i 2 i 2
*ag qXgq * 8y pXgp * ee- t a5 m¥tom (20)
+ ai X0 .+ ai x4+ +a _x + ci +
n,17t-1 n,2°t-2 toT n,m" t-m €t

The first five components of w, together with the elements of

o© and a set of relative weights, wé, for i = 1,...,nmand j = 1,...,n,

define a diagonal matrix of variances for the coefficients. For coeffi-

cients of own lags, that is, a; K for k = 1,2,...,m, we assume the
4

variance is given by

Var (ai k) =— 21 (21)
?
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For lags of other variables in a given equation, that is, at

3K for k =
b
1,2,...,mand i # j, we assume the variance is given by
- T-T~A0.
Var (al ) - —221 (22)
J.k

= T 5-
k eXp(“u“j)cj

For the constant term in each equation, we assume the variance is given
by

iy _ 2
Var (¢7) = 57307 - (23)
The 0? scale factors are present to take account of the units
of the data in determining the prior tightness for coefficients on

different variables.

The relative weights, w?, are a set of numbers that we specify
to reflect our a priori knowledge about the likelihood that lags of
variable j will have nonzero coefficients in equation i. The larger w?
is, the closer to zero we believe that coefficient is likely to be. For
most of the variables, we specify wi = 0 and w§ = 1 for i.t j. For ?he
interest rate and the trade-weighted dollar, we specify mi = 1 and w? =
2 for i # j. These weights, relative to the others, reflect our belief
that these variables are a priori more likely to behave like random
walks, Finally, for the stock price index, we specify wi = 1 and w} =5
to reflect our strong belief that this variable behaves like a random
walk.

Given the above tightnesses on individual coefficients, based
on w, through Tg, We also want to impose a prior belief that the sums of
coefficients on own lags are close to 1 and that those on lags of other
variables are close to 0. This does not affect the mean of our prior.
Consider a diagonal block of variances, M, for a vector of coefficients,
8, on lags of variable j in equation 1, defined by parameters T4 Chrough
7. Let the vector S be def'ined by

1Y6C7 N
S = {'ETJ}[1 1 ... 11. (21)

1
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Then following the heuristic logic of Theil's mixed estimation proce-

dure, we can introduce a dummy observation of the form
Se = v (25)

with the variance of v set to one, by modifying M to take the new form

N:M-{—M‘}.

+ SMST (26)

IMPROVING FORECAST ACCURACY

Before we search over the prior parameters, we generate a set
of benchmark univariate, linear, fixed-coefficient autoregressions.
Based on the results in Litterman (1982), which viewed out-of-sample
forecast performance as a function of lag length for many of these
variables, we chose to include six lags and a constant term in each
equation, and we estimated them by single-equation least squares. For
this set of equations, and all subsequent specifications, we calculate
sets of forecast errors one, three, six, and twelve steps ahead for each
month from 1951:1 through 1980:12. We compute log-determinant measures
of fit and standard errors for each variable, and we look at three 10-
year subperiods, as well as the overall fit, in order to gauge the
consistency of the results. The overall measure of forecast accuracy to
which we give primary attention is the full-period log-determinant of
the covariance matrix of one-step-ahead forecast errors. The univariate

results are presented in table I.

The extent of our investigation of different settings of the =
vector was constrained by the expense of evaluating the forecast per-
formance for each value. Although our calculations were performed on a
Cray-1 computer at the University of Minnesota that is both extremely
fast and inexpensive, each evaluation of forecast performance for a
given value of = required approximately 60 seconds and cost about $30.
About half of the time. for a given run was involved in the recursive
estimation of the 5t's; the rest was used to generate the 12-step-ahead
forecasts for each period and to do the accounting necessary to generate

forecast accuracy statisties.



We chose to focus primarily on two dimensions of the prior:
the overall tightness and the degree of time variation of the para-
meters. Our previous experience with priors of this form has suggested
that the degree of parameterization of an equation is an important
determinant of forecast accuracy. When we view the specification of a
forecasting equation as the construction of a signal extraction filter,
it is clear that equations with too many free parameters tend to pick up
excess noise and to generate poor out-of-sample forecasts. Equations
with too few parameters fail to pick up the signal. The specification
of a prior provides a flexible format through which we can confront the
trade-off between increasing signal extraction capabilities and over-
fitting the data. By adjusting the tightness of the prior, we can tune

the filter along this dimension.

We focus on the forecast performance as a function of the
amount of time variation in order to investigate the degree to which
results might be improved by relaxing the usual assumption of constant
coefficients. We hope not only to increase forecast accuracy, but also
to generate a more realistic description of the uncertainty of fore-

casts, particularly of those at multistep horizons.

As a first step in this investigation, we focused on the
degree to which forecasting would be improved by searching along these
two dimensions. Taking as given the parameter values LET .05, LONE
.001, my = 105, Ty = 2, wg = 0, and ng = 1, we began by minimizing the
one-step-ahead log-determinant as a function of 75 and Mo An informal
search requiring about 50 function evaluations led us to the values g =
1.4 and =y = .23 x 1077,

Over the range we examined, forecast performance varied little
as we changed 5 and Tepe It was clear, though, that at the conclusion
of this search we had found values of g and Ty TO more than a few

percentage points from the point at which our one-step log-determinant

measure was minimized.

The amount of parameter variation allowed at this specifica-
tion is small. The implied standard error of the change in the first
own lag, for example, over the entire sample is about .001. Since the
prior mean of this parameter is 1, parameter drift might be taken as
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negligible. This result may seem surprising at first, but it should not
be. In a model with 61 coefficients on the right-hand side, any very
substantial amount of parameter drift implies large standard errors of
one-step-ahead forecasts. The fact that simple random walk models
forecast economic time series as well as they do over relatively long
time spans is inconsistent with large amounts of parameter variabil-
ity. In other words, allowing for parameter drift improves forecasts
very little; since doing so is expensive, in many applications it will

be reasonable to use fixed-coefficient models.

In a model with 61 coefficients on the right-hand side of each
equation, however, even small amounts of variance in parameter changes
can contribute a substantial amount to forecast error. Furthermore, in
multistep forecasts, Markov parameter drift of the type our model allows
builds up very rapidly in the estimated standard errors of forecast.
Thus, any attempt to obtain more than point forecasts must allow for

parameter drift.

One puzzle we found is that the 12-step-ahead log-determinant
reached a minimum with priors that both were tighter and allowed less
time variation than the prior that was best at the shortest forecast
horizon. Although the differences in fit are small, the pattern of
tighter priors leading to relatively better performance at distant
horizons motivated our making further experiments with the form of the

prior.

Since our conclusion about the amount of time variation seems
important, we examined the possibility that it is dependent on the
particular form in which we allow parameter variation. We experimented
by comparing the forecasting performance of two constant-coefficient
specifications, the first of which uses all available observations at
each point in time and the second of which uses only the 120 most recent
observations (if that many are available). By the one-step-ahead log-
determinant measure, the first specification performs better. Thus,
dropping observations, even those more than 10 years old, causes the
log-determinant to rise. Interestingly, the forecasting performance at
longer horizons did improve when the old observations were dropped. The

conclusion that time variation is small relative to sampling error in
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coefficient estimates seems to be upheld. Since dropping observations
gives more weight to the prior, long-horizon forecasts might be improved

by assuming decay of parameters toward their prior means.

An additional restriction that we considered in the hope that
it would allow more time variation in parameters was a limitation on the
variance of sums of coefficients on lags of each variable in each equa-
tion. We found that if this restriction was imposed very tightly, then
considerably more time variation in individual coefficients was possible
before the forecasting performance worsened. However, none of these
specifications performed as well as those without the tight restric-~
tion. 3/ The best performance along this added dimension was achieved
when mg was between 5 and 1, that is, with standard deviations around
sums of coefficients (aside from scaling) between .2 and 1. In choosing
Tg we also considered various values of T, but the returns to this
search were not large. Of the combinations of values that we tried, the
best was wg = 1 and Ty = 10'7. At this specification, the standard
error of parameter change over the full sample was approximately double

what it was at the previous best-fitting specification.

We imposed a second type of structure on the time variation of

parameters by specifying that the coefficients slowly decay toward the

3/pfter the empirical work for this paper was completed, we
discovered that we had inadvertently switched the o; and o; in the
computer code implementing equation (24). Thus, in equatioﬁg where,
because of the scales of variation, we intended to impose the sum of
coefficients restriction relatively less tightly, instead we imposed it
relatively more tightly. Most of the results reported here impose this
aspect of the prior only very loosely; thus those results should be only
marginally affected by this mistake. Obviously, no negative conclusion
about the usefulness of this aspect of the prior should be drawn from
this work. In more recent experiments, we have found that in systems
with longer lags (we tried specifications with 12 and 15 lags) the sum
of coefficients constraint, correctly imposed, can play a crucial
role. With wn, = 250, we have found significant forecast performance
improvements in systems with longer lags than the system in this
paper. Larger systems have some obvious disadvantages, however, since
both memory and computing time increase approximafely with the square of
the number of lags. The generation of forecast performance statistics
for the 15-lag specifications required 600,000 words of core storage and
took 21.1 minutes of CPU on an IBM 3033, 5.3 times as long as our 6-lag
specifiication.
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prior mean. This structure was implemented by choosing values of the
decay parameter, Tg, slightly less than 1. We reestimated the coeffi-
cients with each new observation, but cost considerations prevented us
from revising the coefficient estimates at each step in the forecasting
recursion. In one sample forecast where we did take account of para-
meter decay at the .9975 per period rate, we found that the forecasts
changed only by about .1 percent at the 12-step horizon and about 1.5
percent at the 48-step horizon.

Letting ng = .999 in this type of specification was somewhat
successful in terms of improving forecast performance, but it did not
provide much room for allowing a larger degree of time variation. At
this value for mg, doubling the time-variation parameter, Ters to .2 x
10'6 marginally improved the one-step-ahead forecasts but led to a much
larger decrease in accuracy at longer horizons. Increasing the rate of
decay to .9975 caused the forecast performance at a one-step horizon to
worsen by about the same amount as that at a twelve-step horizon im-
proved, a very small amount. Larger amounts of decay caused decreases
in accuracy at all horizons.

Based on these findings, we adopted as our preferred specifi-
cation the following parameter values: Ty = .05, mp = .005, LESE 105,
Ty = 2, Ty = 1.4, e = 1, Ty = 10'7, and wg = .999. The forecast ac-

curacy statistics at this specification are given in table II.

When we compare the performance of different systems, we see
that, aside from covariance terms, changes in the log-determinant repre-
sent a sum of the percentage changes in the variance of forecast errors
from each equation. Multiplying the change by 5 (dividing by 20 to get
standard errors for 10 variables and multiplying by 100 to get a per-
centage) gives a rough estimate of the average percentage of change in
forecast standard errors of the equations. Thus, in going from the
univariate to the final specification, we observe an average improvement
of about 2 percent in the one-step-ahead forecast errors and about 12
percent at the twelve-step horizon.

In searching informally over parameters of our prior, we were
encouraged to find that forecast performance was generally insensitive
to variation in the parameters. All of our sets of parameter values had
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log-determinants closer to our final choice than to the univariate,
indicating the lack of sensitivity of forecast performance over our

range of priors.

To investigate this sensitivity more carefully, however, we
looked at forecast performance over a larger grid of values for the
overall tightness and time-variation parameters of our prior. The grid
was chosen to cover a region several orders of magnitude wide along both

dimensions, far outside the range we would consider reasonable.

Our preferred prior overall tightness of 1.4 represents a 40
percent scaling up of the variances of all coefficient prior distri-
butions from our original specification. For our grid search we chose
to look at the values .014, .14, .7, 1.4, 2.8, and 14. The final value
for our time-variation parameter was 10-7. We chose a grid along this
dimension of 10'15, 10’7, 10'6, and 107°. The first value represents
essentially no parameter variation, whereas the last specifies an order

of magnitude larger than our preferred value.

The overall accuracy of forecasts generated by our vector
autoregressions turns out to be a well-behaved function of the prior
parameters over which we searched. We present the results of the grid
search as a series of charts. The overall forecast accuracy is shown
from two different views in charts 1 and 2. Here forecast accuracy is
represented by the height of a surface for each point on our grid. The

height is given by
5{10g|E,| - logl|E,(g,m,)|] (27)

where E; is the cross-product matrix of the one-step-ahead forecast
errors for our preferred specification and E1(r5,n7) is the cross-prod-
uct matrix of one-step-ahead forecast errors for the point on the grid
(“5’“7)'

These charts clearly show that the accuracy surface is not
sensitive to even order-of-magnitude changes in these parameters of our
prior. Because we would give low weight to regions of our grid away
from the center, we interpret this result as indicating that if we think

of ourselves as having a prior that is a mixture of normal priors in-
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dexed by the values of m, we will end up with a posterior much like that

for our final chosen specification.

A slightly more detailed picture of the forecast performance
over our grid is given in charts 3-8. Here we display the accuracy
surfaces for each of our three nonoverlapping subperiods for the one-
step-ahead and twelve-step-ahead horizons. The consistency of the shape
of this surface over the different periods is reassuring. We can rea-
sonably assume that any choice of values for g and Mg in a wide range
around the center of this grid would remain close to the optimal choice,

at least for one-step-ahead forecasts.

The results for the twelve-step-ahead horizon, displayed in
charts 6-8, are less consistent over time. In general, though, they
reflect the finding that tighter priors with less time variation of

parameters appear to forecast better over longer horizons.

What have we accomplished through this specification search?
By some standards, the answer would appear to be not much. After a
complex and somewhat expensive search (a total computing cost of about
$3,000), we find a specification that generates out-of-sample forecast
errors averaging a few percentage points smaller than simple univariate
autoregressions. Yet, as we pointed out earlier, our search here has
been aimed at testing the usefulness of certain ways of specifying a
prior. Nearly all the advantages of the multivariate procedures over
the univariate procedures in forecasting performance could have been
obtained without allowing for parameter drift (a major source of com-
putational expense) and without searching over most of the dimensions we
explored. A more difficult question is whether our search has given us
a reliable probability distribution for future data.

Despite the small absolute gain in forecast accuracy, it is
significant that we have documented a consistent gain from the use of a
formally explicit multivariate method in a system of this size. This
has not been done before, to our knowledge. The difference in acecuracy
that we find between multivariate and univariate methods is substantial
relative to differences in forecast accuracy ordinarily turned up in
comparisons across methods, even though it is not large relative to

total forecast error. Moreover, if we think of a decomposition of
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movements in the data into signal and noise, with noise being the domi-
nant component, then a 2 percent increase in forecast accuracy must
represent a much larger percentage increase in the amount of signal that
is being captured. With a multivariate probability model that has some
claim to accuracy, we can generate conditional distributions of future
time paths of a vector of economic variables that capture the most

important cross-variable relations.

FORECASTS AND CONDITIONAL PROJECTION

The main purpose of generating a model like ours is to use it
and the data available at a given date t to assess what is likely to
happen after t. We describe here ideas for making assessments that are

in some ways new but that could be applied to any time series model.

Obviously, one can construct a forecast of the most likely
path of the economy. For our model, this is just a matter of recur-
sively forecasting one-step-azhead with the autoregressive equatioms,
using forecast values as if they were actual data as the date is ad-
vanced into the future. The appropriate procedure is to use the most
recent estimate of the randomly varying parameters and vary them during
the forecasting recursion according to their equation of evolution (6),
ignoring the random term in that equation. Of course, when g is 1,
this amounts to holding the parameters constant. Because the forecasts
after the first period with data are nonlinear functions of the para-
meters, they are not unbiased; that is, they do not represent the con-
ditional expectation of future data. One can, at considerable expense,
evaluate the conditional expectation by stochastically simulating the
model and integrating the posterior distribution of forecasts by Monte
Carlo methods. In one experiment using data through 1982:12 we found
that the differences in forecasts based on time-invariant coefficients
(coefficients decaying at the rate .999) and coefficients generated by
Monte Carle integration were quite small relative to the uncertainty in

the forecasts.

We present in charts 9-24 two forecasts from the model for
1983 through 1986. The first is based on data through December 1982;

the second, on data through March 1983. The charts in both cases show a
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forecast of an extremely vigorous recovery. This 1is quite different
from the published forecasts circulating in February 1983. The Con-
gressional Budget Office (CBO), for example, forecasted real GNP growth
during calendar 1983 of only U4 percent, with inflation at 4.7 percent
and the Treasury bill rate at 6.8 percent. With data through December
1982, our model forecasted real GNP growth at 8.8 percent during 1983
combined with inflation of 5.9 percent and an interest rate of 8.7
percent (charts 10, 12, and 17). Data for the first quarter suggested
that the recovery began with less strength than the model had antici-
pated. These observations did not significantly change the growth rates
forecasted for future quarters, however. '

Cross-Variable Interactions

After preparing a forecast, perhaps the most obvious next step
in using a model to evaluate future prospects is to ask how likely other
paths are. We can ask, for example, whether the CBO's projected output
and price level growth rates and Treasury bill rates are likely to be
realized. In answering these questions, however, we will be taking
seriously the cross-variable relationships estimated by the model.
Before considering the questions, therefore, investigating those aspects
of the model might be useful.

The favorable comparison between the forecast performance of
our final specification and that of the univariate equations suggests
that the cross-variable interactions that are captured by our equations
represent predictable responses. Moreover, our tests indicate that
these responses explain a signifiecant proportion of the variation in
most of the variables in the model and, with a few exceptions, that they
remain fairly stable across different subperiods of the sample.

One measure of the size of the cross-variable interactions is
the proportion of the forecast error variance of a variable explained by
orthogonalized innovations in the other variables in the system. This
measure is based on a decomposition of the variance of the k-step fore-
cast into a sum of components associated with each of a set of orthogon-
al innovations (see Sims 1981). Although the decomposition depends on
the qrdering chosen for the orthogonalization, our point here is merely
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to demonstrate the extent to which interactions among variables are
captured. We have looked at several orderings, and this aspect of the
decomposition is not affected.

For some variables, such as the stock price index, our prior
against cross-variable response is so strong that virtually none is
allowed. Own innovations explain over 95 percent of stock price fore-
cast errors, even at the fairly long 48-month horizon. For other vari-
ables in the system, however, the cross-variable responses are signifi-
cant. The percentages of forecast variance explained by own innovations
at a U48-month horizon (given in the order of orthogonalization for this
decomposition) are as follows: M1, 29.2; stock price index, 95.1;
Treasury bill rate, 59.9; flow of total nonfinancial debt, 76.9; GNP
deflator, 28.4; change in inventories, 76.0; real GNP, 11.7; federal
outlays, 79.7; federal receipts, 65.1; and trade-weighted dollar, 54.0.

We next display the responses of real GNP to the orthogonal-
ized innovations. These responses also demonstrate the extent to which
the model is capable of incorporating multivariate interactions, as well
as the extent to which such responses are stable over time. The re-
sponses, shown in charts 25-34, were estimated independently over three
nonoverlapping subperiods, the same prior being imposed at the beginning
of each. Many of the responses are substantial relative to the response
to own innovations, and for the more significant responses there appear

to be strong similarities across the time periods.

The responses are scaled to show percentage movements in real
GNP following orthogonalized innovations in each of the other vari-
ables. The size of the shock, which is the same for each period, is
normalized to be one standard error of the distribution of innovations
over the entire period. The largest responses of real GNP are to in-
novations in real GNP, the change in business inventories, and the stock
price index (charts 34, 32, and 25). These responses are all similar
across the different subperiods. The responses of output to interest
rates and money innovations (charts 26 and 27) are also substantial, and
they are relatively similar in their dynamic pattern in different sub-
periods. The other responses are not particularly consistent over time

periods, but for the most part they are not large.
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With regard to the question of consistency across subperiods,
some readers will undoubtedly be more impressed at first glance by the
variations in some of the responses than by the similarities in oth-
ers. Perhaps the most natural metric for the degree of stability of the
responses through time, though, is the measure of out-of-sample fore-
casting accuracy that we have already stressed. We know that our speci-
fication does well by that measure. What we find encouraging in looking
at these response patterns, and the earlier decompositions of forecast
variance, is that the prior that led to relatively accurate forecasts is
also capable of capturing significant cross-variable interaction even in
these three subperiods, each of which includes only a very limited

amount of data.

We next present the response functions for all ten variables,
plus those implied for federal deficits, in charts 35-45. These re-
sponse functions are generated from the posterior mode coefficient
estimates at the end of the sample. In each case, the responses of the
variable are given to a one-standard-error orthogonalized innovation in
each variable in the system. The responses are presented in the order

of orthogonalization.

In contrast to the earlier responses shown for real GNP, here
the same scale is used for all responses of a given variable in order to
facilitate comparison of the relative magnitudes of different re-
sponses. It is clear in chart 35, for example, that real GNP's re-
sponses to the GNP deflator and to federal receipts and outlays are
insignificant compared to its responses to money, stock prices, and

interest rates.

In chart 36, a sustained positive response of the price level
to money innovations can be seen. The price level exhibits a large
negative response to interest rate innovations, but only after a year
lag. A large negative response of money to interest rate innovations is
shown in chart 37. Finally, it is clear in chart 44 that little of the
variance of the budget deficit is accounted for by innovations in econo-

mic variables other than receipts and outlays.
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Measuring the Likelihood of Alternative Paths

There is no unambiguously correct way to measure the likeli-
hood that a particular condition on the projected future path of the
economy will be realized. Of course, the probability that any set of
equality restrictions will be exactly realized is zero. When we ask how
likely a projected path is we ordinarily mean to ask how likely it is
that the actual path will differ from the model's most likely projection
as much as the projected path and in the same direction. There is no
mechanical way to determine, from the path alone, how to interpret "in
the same direction." In our example, we might be interested in the
probability that real GNP growth will be at leaét as low as the CBO's 4
percent and that inflation and the interest rate will also be at least
as low as its projections. But one might instead consider that only the
GNP growth rate differences are interesting, so that forecasts differing
in the same direction as the CBO's are all those with growth rates at
least as low. Or one might suppose that the critical thing about the
CBO forecast is its lower real interest rate, leading one to check the
plausibility of its projected gap between inflation rates and interest

rates.

If a class of future paths is specified, one can measure the
probability of the class directly--by stochastically simulating the
model--if no computationally cheaper analytic method is available. This
method is expensive, however, both in computer time and in its require-
ment for careful thought about the class of paths to be assessed.
Instead, one can mechanically construct a class of paths from specified
restrictions. A natural way of doing this is available when the joint
density function of future paths & is unimodal and has convex level
surfaces (like a normal density). We can first construct the most
likely path satisfying the restrictions, then consider the class of all
paths lying on the downhill side of the tangent plane to the level
surface at that point in the space of future paths. Chart 46 shows the

&/Here Wwe are thinking of future paths of the economy as long
lists of numbers, made up of the values of the variables in the system
at each future date considered.
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nature of the set of paths whose probability would be measured in a two-

dimensional special case.

For a normal p.d.f., this leads to using the square root of
the usual chi-squared statistic as if it were a normal random variable
and measuring plausibility by the probability in the upper tail of the
normal p.d.f. at the level of this statistic. One might wonder why it
is not best, for the case of a normal distribution over future paths, to
measure the plausibility of a set of linear restrictions directly by the
significance level of its associated chi-squared statistic, using as
degrees of freedom the number of restrictions applied., This is, after
all, the form of a classical test of the restrietions. Such a procedure
treats as the class of paths whose probability is to be measured all
paths with lower likelihood than the most likely path satisfying the
restrictions. Thus, if the model asserts that real growth will be 8
percent and inflation 6 percent and someone claims that instead growth
will be U4 percent and inflation 9 percent, the claim is in some sense
different from the model assertion in one direction: it is more pessi-
mistic. The standard use of the chi-squared statistic would assess the
likelihood of the pessimistic forecast by looking at the probability of
all paths at least as unlikely, including those that are unlikely be-
cause they are much more optimistic than the model. The index we use
here instead looks only at paths lying on one side of the claimed
path. This class of paths includes some with less inflation and much
less real growth as well as some with more inflation and less real
growth, so it is not as narrow a class as that of paths with both less
real growth and more inflation. However, the trade-off between infla-
tion and real growth implicit in defining the class of paths more pes-
simistie than that claimed is constructed mechanically from the covari-
ance matrix of paths. This will at best approximate the way we would
construct a class of more pessimistic paths if we thought about it

carefully. Nonetheless, we apply this measure of plausibility here.

To do so, we must first find the model's projection of the
most likely future path for the economy subject to the condition that
the CBO forecasts for annual average growth rates are satisfied. Such

conditional projections may be interesting in their own right as part of
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a description of the likelihood function and for other applications we

will mention below.

The principle is that the model provides a joint conditional
density function for future paths of the process. We simply use that
function to find likelihood-maximizing paths subject to certain restric-
tions on the future paths. These computations cannot in general be
carried out recursively forward in time as can the point forecasts,
because a constraint on future values of a variable in the system can
carry information about the likely current value of all variables. If,
for example, we know that the money stock will grow slowly between 12
and 18 months from now, and if we know that the money stock is nega-
tively correlated with disturbances in the interest rate from 12 to 18
months earlier, then we should think it likely that interest rates will

rise soon.

The computations are simplest when the model is stationary and
concerned only with second-order properties, so we first describe our
procedure within the confines of the prediction problem for covariance
stationary processes. The vector stochastic process {xt: t = ...,-2,
-1,0,1,2,...} is assumed to be covariance stationary and linearly regu-

lar. The moving average representation (MAR) is

X, = ) Bgup o (28)
s=0

where the innovations u, are uncorrelated both across time and con-

temporaneously. The MAR is normalized so that E(utu%) = I.

A linear constraint upen future values of x is a linear con-
straint upon future values of the innovations process u. The constraint
on x is transformed into the equivalent constraint on u. This has some
computational advantages when, as is likely for models of this type, we
have already computed the coefficients of the MAR in any case. The
least squares estimate of the constrained u;s is computed, and the least
squares projection of x subject to this constraint is obtained by con-

structing the path for x implied by the computed innovations.

Let [y]|Q] denote the orthogonal projection of the random
variable y onto the closed subspace Q in the Hilbert space of finite
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variance random variables on the underlying probabi;ity space. If y is
a vector, the projection is done component by component. Hy(t) is the
closure of the subspace of finite linear combinations of Xg for s < t.
Consider the projection of xi , on the space spanned by Hx(t) and

o

S¥x = S.x, . 2
L Sy¥e_; (29)
J_.
where the sequence 3 contains the coefficients on past and future x

values in a set of constraints.

We assume

) S8y <= (30)

j=-=

and Sj is dimension gxn, where q is the number of constraints and n is
the dimension of x,. The projection we are considering can be thought
of as the best linear predictor of x. ,, glven knowledge of x values up
to time t and also knowledge of the linear combinations of past and
future x's whose coefficients are in S. 1In practice, the S sequence
will be zero except for a finite number of terms. Applying the law of

recursive projections results in the following:
[xt+lex(t) + span(S¥x)] = (31)

[Xt+k|Hx(t)] + [(Xt+k - [xt+k|HX(t)])|span[S*x - [S*x}Hx(t)])]

and
k-1
Koo = [Fpaicl B (0] = ZOBsut+k—s’ (32)
S=
Now
s#x - [s*x[H ()] = s*(x - [z[H _(t)]) (33)
Ky = [xsle(t)] =0 (34)
for s £ ¢, and
s-t-1
Xy - [x [0 (2)] = B.u (35)
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for s > £, so

s*(x - [lex(t)]) z 2 s_m( 2 ! t+m-3 (36)
@ k-1

= kz1[jgosj_k8j )ut+k (37)

= R¥y = % Rjut_j. (38)

Now the second projection on the right-hand side of (31) can be written

k-1
SZOBs[ut+k-is*u]' (39)

It can be verified, using the orthogonality principle for
projections, that the projection [ut+k-j|R*u] is

-1
. -1
Up g = Rj_k{ R.R'}™ (R*u). (40)

jm—w JJ
These are the least squares projections of the future innovations. The
right-hand side of (31) is thus the sum of the unconstrained forecast
plus

k-1
B.u (41)
s=0 S t+k-s
which implies that the conditional projections can be obtained by simu-
lating the model beginning at t + 1, using the u's as the innovations.
In a particular application, a value for S¥x is usually supplied; the
equivalent value for R¥u is the difference between S*x and the forecast

value for S¥*x.

To see how this works in a simple case, suppose that the level
of the money supply (MS) is available only with a two-week delay, while
the interest rate for Treasury bills (TB) is available daily. We have a
weekly model that we want to use to forecast, but at t we have data on
Mg only for s < t - 1. Here, purely for forecasting purposes, we need
to make a projection conditional on TB._; and TB;.
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With the vector autoregression normalized so that BO is lower-
triangular and TB comes above Mg in the ordering of variables, the
moving average coefficients needed are the responses of R to orthogona-
lized shocks in itself at zero and one step and in Mg at one step; call
these b,,, by ¢, and bp1- With v, and Wy as the innovations in TB and Mg
at t,

TBt-1 - %B b 0 v 0 0 v

t-11 _| b0 . . (42)

By - TBy 1 Pmi Yee1] |Poo O Vg
The 2x2 matrices in this are, respectively, R_q and R_, in the
notation above. The most convenient way to do this computation is to

stack the set of innovations. With

-~

\
U = [Vt-1wt-1vtwt] (43)
b 0 0 0
b0
_bb1 bm1 brO 0
TB - TB
S et (45)
TBt - TBt

the formula for the constrained U vector becomes U = g'(gg')'1§, which
is the solution of' the problem: min U'U subject to RU = r.

In general, R is the matrix with as many rows as there are

;'s through the end of

constraints formed by arranging horizontally the RJ

the constraint horizon, k,
R=[Rq R, ... RI (46)

and r is the vector of differences between the constrained values of S¥x

and the unconditional forecasts of S¥x,

One important variant on this procedure is to add the addi-
tional constraint that only certain innovations are allowed to be non-
zero. We might want to do this if we had in mind interpretations for

certain innovations. For example, if we regarded money as a monetary
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policy variable, we might suppose that innovations in that variable
represented changes in policy. Most monetarist rational expectations
models make exactly this assumption. Then a forecast conditional on low
inflation and on innovations being zero in all variables other than
money would display the most likely way for monetary policy to generate

low inflation. 3/

Holding certain innovations to zero in the conditional pro-
jection can be accomplished simply by eliminating the columns in the R
matrix that correspond to the variables whose innovations must be
zero., For computing constrained paths, the normalization of the MAR
used to obtain orthonormal u's has no effect except on the computational
buréen: if E(utué) = I, the formula--using the stacking from above--
is U = (z e I)R'[R(z @ I)E']'1g, where a different R matrix is obtained
using the nonorthogonalized MAR. Orthogonalization eliminates the need
for the z @ I by incorporating a factorization of I into the MAR and
thus into the R matrix. However, when innovations for certain variables
are constrained to be zero, orthogonalization is no longer innocuous,
since the definition of a variable's innovations depends on the ortho-
gonalization. For example, the least squares constrained path may prove
to be obtained primarily through innovations in the poliey variables in
one ordering, but through innovations in the nonpolicy variables in
another.

Although the proofs above are limited to covariance-stationary
processes, the method will still work if, for example, x has an in-

variant autoregressive representation with unstable roots.

Estimating Likely Forecast Errors

Qur experience suggests that, though models with time-invari-
ant coefficients generate reasonable forecasts, they have a tendency to

2/A number of models in the literature identify innovations in
certain varilables as generated by policy or go still further and treat
certain poliey variables as exzogenous, hence Granger-causally prior, and
as entirely determined by policy. In fact, this kind of assumption is
probably the norm in models used to generate implications for policy.
We regard such assumptions as frequently being interesting speculative
hypotheses, but seldom solidly justifiable as a priori knowledge.
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generate unreasonably optimistic estimates of the likely size of future
forecast errors--even when allowing for sampling error in the estimated
coefficients (which we ignored above). One of the objectives of our
research has been to discover whether our random parameter specification

avoids this optimistic tendency.

We will compare four different ways of estimating the covari-
ance matrix of forecast errors. The first matrix, F, is generated from
the usual innovation covariance matrix, £, which is estimated by taking
cross-products of in-sample residuals based on a fixed-coefficient
model. The k-step forecast error covariance matrix is given as

k-1
I, = ) B.EB! (47)
s=0
where the Bg's are the coefficients in the MAR associated with the

fixed-coefficient model.

Our second forecast error covariance matrix we call O, the
estimate obtained by using a time-varying coefficient model, but taking
the end-of-period coefficient estimates as fixed and using the recur-
sively computed, one-step-ahead forecast errors to estimate the covari-

ance matrix of innovations.

A third forecast error covariance matrix is obtained by a
Monte Carlo simulation of the full random parameter model from the end-
of-sample initial conditions. This estimate we call M. To reduce the
expense of this simulation experiment, we used a prior with no sum of
coefficients restriction imposed. This simplifies the simulations since

it implies a diagonal covariance matrix for the coefficient changes.

Finally, a fourth, somewhat conservative way to assess likely
forecast accuracy is to generate forecasts recursively over a range of
horizons at each sample point, using data only up to the forecast date
in making each set of forecasts. Forming the sample covariance matrigx,
V, of realized forecast errors at various horizons gives us a direct
measure of likely forecast error variances at those horizons. This
procedure assumes that the stochastic process for the vector of forecast
errors by horizon is jointly stationary, but it requires no assumption
that the model justifying the forecast procedure is also generating the
data.
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Covariance matrices F and M take no account of uncertainty in
the estimated coefficients (though, of course, M accounts for uncer-
tainty about future coefficients due to parameter change). Matrix O
takes some account of parameter uncertainty by using the recursively
generated one-step-ahead forecast errors to estimate equation residual

error. And V takes full account of all sources of forecast error.

Our experiments with these four different ways of estimating
forecast error covariance matrices gave no clear ranking of the meth-
ods. The estimated standard errors of forecasts at 12- and U8-month
horizons are shown in table III. Each of our different estimated matri-
ces--F, 0, V, and M--at times gives both the largest and the smallest
estimated standard errors. This result is certainly due in part to the
small samples we used. In our Monte Carlo estimates we used only 200
draws, and for the generation of historical second moments in V we used
240 observations, which represent only five nonoverlapping 48-month
periods.

Our original suspicion, that estimates of uncertainty such as
F, which are based on fixed-coefficient models, would badly underesti-
mate the average out-of-sample, multistep forecast errors as measured in
V, was only occasionally verified. At the U4B8-step horizon, F badly
underestimates the size of observed errors only for money and prices.
In those two cases the Monte Carlo matrix M, based on the time-varying
specifications, was much closer to the observed results in V. More
often, however, the estimates in F were larger than the observed fore-
cast variance, and M in some of those cases gave even larger esti-
mates. It is possible, of course, that the use of V as a standard of
comparison is inappropriate. When parameters are varying through time,
the uncertainty also varies, and at a given time it may be very differ-
ent from an estimate based on average errors in the past. For the
trade-weighted dollar the Monte Carlo estimates suggest much less uncer-
tainty than the others, and it is certainly conceivable that this is

correct.
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Conditional Projections :

The time-varying parameters specification used in this paper
implies a conditionally heteroscedastic non-Gaussian distribution for
the forecast errors. If we form the sample covariance matrix, vV, of
forecast errors and form conditional projections as minimum mean square
error predictions using V, we are therefore contradicting the probabil-
ity model that justifies our forecasting procedure. However, it is not
clear whether that model is more realistic than one that uses V to form

conditional projections.

Using V to form conditional projections is only in a sense
conservative: it is unlikely to underestimate greatly the magnitude of
errors, even at long horizons. But when we estimate the whole of V
without applying Bayesian methods, we are losing the stability provided
by Bayesian shrinkage toward a prior mean. In particular, when we start
comparing conditional projections to form conclusions about how much
variables respond to each other, use of V may give an exaggerated view
of the strength of interaction among variables in the data.

A Gaussian covariance-stationary process generates a normal
Joint distribution for future paths given the past, with some covariance
matrix. However, that covariance matrix has a special structure. To
take the simplest case, consider the covariance matrix of one- and two-
step-ahead forecasts for a univariate process. If innovation variance
is 1, the variance of two-step-ahead forecast errors, Spo, is 1 + b2;
that for one-step-ahead forecast errors, Sq1» 1s 1; and the covariance
of one- and two-step-ahead forecasts, S12, 1s b, where b is the coeffi-
cient on the first lagged innovation in the MAR. Thus, the square root
of spy - 591 1s sqo. But for a process such that minimum variance fore-
casts are nonlinear functions of the data, such a restriction on the
covariance matrix of forecast errors is not in general satisfied. For
example, suppose y(t) = e(t) + sgn[e(t - 1)], where e(t) is i.i.d.
uniformly on (-.5,.5) and the function sgn has value 1 if its argument
is positive and -1 if its argument is negative. Clearly, we can deter-
mine sgn[e(t - 1)] from knowledge of y(t - 1), so the one-step-ahead
forecast error variance is the variance of e(t), that is, 1/12. The

variance of the two-step-ahead forecast error is 1 + (1/12), and the
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covariance of one- and two-step-ahead forecasts is not (522 - 511)'5 =
1, but instead .25.

Finding the best linear forecast for a given fixed V not
generated by a covariance-stationary process therefore requires some
modification of our procedure. For this case, the difference between
the constrained forecast and the unconstrained forecast is
V§'(§V§')'1§, where S is a matrix with as many rows as there are con-
:'s [defined in (29)] over

J
the interval of the constraint, arranged horizontally, and r is the same

straints and consists of blocks given by the S

vector as above. A restriction corresponding to the one that only
certain variables have nonzero innovations can be obtained by examining
the meaning of a Choleski factorization of V into LL', L lower-triangu-
lar. If E(UU') = I, then, if W = LU, E(WW') = V. The Choleski factori-
zation transforms the forecast error W into LU, where each component of
U is created as that part of the corresponding element of W that is
uncorrelated with the previously defined U's. This is precisely how the
orthogonalized innovations decompose the forecast error in the covari-
ance-stationary case: the innovation for variable j at step k is the
(normalized) part of the forecast error that is orthogonal to the in-
novations in all variables for steps < k and for variables < j at step
k. L describes an analog of the MAR: each column gives the response of
the system to a unit shock in the corresponding component of U. If W =
V§'(§V§')-1§, then U = LW, and if R [analogous to the R defined in
(46)] is defined as SL, then U = 5’(53')-15‘ Again, by cutting the
appropriate columns out of the matrix R, restrictions that certain

innovations remain at zero can be implemented.

In this paper we have made our analysis conditional on con-
straints that involve projections U8 periods into the future. Because
of the size of the system, a full V or M matrix would be 480x480.
Rather than attempt to operate with such a huge matrix, we have re-
stricted ourselves to the conditional projections for a nonconsecutive
sequence of horizons between 1 and 48 steps into the future, with all
constraints being put only on the inecluded horizons. That is, instead
of forming the covariance matrix for forecasts 1 through U8 steps ahead,

we form the covariance matrix for forecasts 1, 2, 3, 6, 9, 12, 18, 24,
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30, 36, and 48 steps ahead. The restrictions we consider on future

paths must then be defined in terms of these horizons.

We presented the unconditional forecasts earlier in charts 9-
24. Here we report the unconditional forecasts as of 1982:12 again, in
table IV in a format to match the way we will report the conditional
forecasts. In table IV we also include the actual values for 1983,

which have been observed since the forecasts were made.

Charts U47-57 each show those actual values, four conditional
forecasts produced by the model, and a confidence interval for the
unconditional forecasts. The first three conditional forecasts are
constrained to mateh the CBO's 1983 and 1984 averages for real growth,
inflation, and interest rates, using three covariance matrices: M, V,
and 0. The confidence interval includes the modal 50 percent of the
postérior density.é/ The interval 1s based on the 200 simulations used
to form the covariance matrix M. Although they were not constrained to
match the CBO projections for the deficit, these forecasts agree with
them fairly closely. The CBO projects the deficit to be $194 billion,
$197 billion, $214 billion, and $231 billion in fiscal years 1983-86,
and all the model's conditional projections are in this range. The
charts also include a conditional projection from an experiment in which

the deficit was constrained to reach zero at 1984:6 and stay there.

The charts for variables expressed in terms of growth rates
use step functions to emphasize that the growth is an annualized rate
over the interval of the step. Note that the length of the interval
increases with the horizon of the forecast. This variation in the
interval length causes the confidence bands to narrow at the longer
horizons despite increased uncertainty about month-to-month growth
rates. The three variables expressed in terms of their levels--the
Treasury bill rate, the change in business inventories, and the federal

government deficit--are shown with lines connecting the points reflect-

é/The modal 50 percent of the posterior density is found by
ordering the values of the simulations for a given variable at a given
time period. In this case, based on 200 simulations, the lower 50
percent bound is defined to be the 51st value of the 200; the upper
bound is the 150th value.
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ing the values for the last month of the intervals considered (charts
51, 52, and 56). The actual numerical values of the constrained fore-

casts are given in tables V through VIII.

All three forecasts conditioned on the CBO projections are
implausible, based on their implausibility index (calculated as the root
sum of squares of the standardized shocks required to generate the
forecast). The conditional forecast using the fixed-coefficient 0
matrix has an index of 4.4, improbable if treated as a one-tailed normal
or t-test statistic. For the forecast generated from the V matrix, the
index is 3.0, and for the M matrix it is 3.3--both smaller than for the

fixed-coefficient model, but still in the range of implausibility.

All the forecasts conditional on the CBO projections show an
initial sharp contraction in both receipts and outlays (charts 54 and
55), and all show slower money growth than the unconditional forecast
(chart 49). However, the degree to which money growth is reduced is
much larger in the V forecast than in either of the other two, and the
reduction in stock prices (chart 50) is much greater in the fixed-coef-
ficient model O than in the other two. 'We should note that the results
from the simulation-based M matrix differ noticeably between an M matrix
based on 200 random draws and one based on 100 random draws. Because
the empirical V matrix is also based on a sample of only a few hundred
highly dependent, observed forecast errors, it too is probably infected
by substantial sampling error. Thus, though noticeable differences
exist, they may be inherent statistical error rather than fundamental

differences in the results based on these different approaches.

To understand why the forecasts emerge as implausible, it may
help to examine the time sequence of standardized shocks implied by
them, as displayed in table IX for the empirical V version. (Note that
there are no standardized shocks after 1984:12 because the constraints
involved no dates after that.) Because the model shows a strong con-
nection from both M1 and stock price innovations to subsequent output
and (to a lesser extent) price movements, both these variables show a
sequence of fairly large negative standardized shocks. One possible
interpretation of the projection is what might be called an irrational

monetarist one. A less expansionary monetary poliecy than the uncon-



-37-

strained forecast of the model leads to correct anticipations of lower
future inflation and to lower nominal interest rates. Because of some
kind of price rigidity or money illusion (perhaps an inability of wage
contracts to lower their rates of increase fast enough), the lower

inflation rate leads to persistently lower output.

As Sims (1983) has recently argued, though, the practice of
identifying policy actions with innovations in poliey variables, which
underlies much standard manipulation of econometric models for policy
analysis as well as some rational expectations macroeconomics, requires
a justification that may not be easy to find. One could interpret the
forecasts conditioned on the CBO projections as showing the response of
the economy to public recognition that capacity utilization is likely to
remain low and unemployment high, due to continued slow adaptation of
the industrial economies to high energy prices and to the nominal iner-
tia of the wage and price setting mechanism. On this interpretation,
new information appears first in the financial variables of money, the
bill rate, and the stock price index because all three (with a partially
accommodative monetary policy) react quickly to the public's anticipa-
tions of the future. They therefore do not reflect policy decisions,
and the difference between the CBO and the central model projections
cannot be read as displaying the effect of contractionary monetary

policy.

One interpretation that is not consistent with the model is
the idea that deficits might be critical to the difference between the
model's expansionary central forecast and the less vigorous CBO fore-
cast. Differences between the deficit predictions of these conditional
projections and those of the model's central forecast are slight.
Furthermore, in an experiment we do not report here in detail, we tried
imposing a constraint that the deficit be down to 2 percent of GNP by
1984:12. That projection shows expenditures lower and revenues higher,
with hardly any other change in the forecast relative to the model's
unconstrained forecast. The 1implausibility index for this forecast
ranges from .62 to 1.2 for the three methods, indicating that the fore-

cast is not at all unlikely.
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In a more extreme experiment, which we also show in charts y7-
57 and table VIII, the deficit was constrained to reach zero in 1984:6
and stay there. The shocks associated with this projection, which used
the M matrix, are shown in table X. This projection has an implaus-
ibility index ranging from 3.6 to 12, with the lowest value coming from
this variable-parameters projection. The range is large, but of course
all the index values show the constraint to be in the region of great
implausibility.

The constraint of a zero deficit by 1984:6 produces noticeable
effects on the projections for other variables, with even more rapid
expansion than in the central forecast in the period before 1984:6,
followed by a sharp reduction in output growth rate (chart 47) and a
rise in interest rates (chart 51) when the deficit takes its sharpest
drop. This course is consistent with a Keynesian interpretation that
expansion tends to reduce deficits by raising the tax base faster than
it raises government spending plans, at least in the short run, and that
after taxes are raised and expenditures reduced, there are contraction-
ary effects on the economy. The model, then, can be interpreted as
saying that the most likely way to arrive at a zero deficit is to have a
lucky expansion in output soon, followed by an unusually large rise in
tazxes and decline in expenditures.

Note also that there are several ways to model the effects of
a correctly anticipated future reduction in the deficit that imply that
it would have both current expansionary effects on demand and contrac-
tionary effects when it actually occurs. Since there is more than one
way to get such a result, none of them simple, we do not lay out such a
theory. We only point out that the initial expansion in the projection
with small future deficit can be interpreted as directly produced by

anticipations of that deficit.

The model shows less impact of drastic changes in future
deficits than many economists would think likely. The modest implaus-
ibility index for the drastic defieit reduction of table VIII indicates
that the model's deficit forecasts have shown substantial error in the
historical sample, but announced and believed changes of such magnitude

probably have not occurred before. If so, the conditional forecast in
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this table would not be a good guide to the likely effects of an an-
nounced and believed change. Yet, if changes of this magnitude have not
been announced and believed before, that is reason to question whether a

believable announcement of this type is possible.

As a kind of consistency check of these results, we also
directly investigated the posterior distribution using the Monte Carlo
method to integrate various regions and to evaluate conditional expecta-
tions. For example, to judge the plausibility of the CBO forecast in
another way, we counted the number of our 200 simulations that had real
GNP growth lower than projected by the CBO in 1983 and 1984. We found
only 4 such simulations, confirming the implausibility of the CBO fore-
cast according to our model. In a similar experiment, we found 37
simulations that had the price level growing less rapidly than the CBO
forecast. There was only 1 simulation that had both real GNP and price
level growth lower than that of the CBO forecast.

A forecast conditioned on low deficits was formed by averaging
the 60 simulations with the lowest deficit forecasts for the period from
1984:6 to 1986:12. The average deficit path for this group is negative
for the period, smoothly declining from current levels to zero in March
1985 and ending the period with a $100 billion surplus. Consistent with
the conditional projections above, this subset of the simulations has
lower interest rates; higher stock prices; and more rapid growth of
money, prices, and output. The deficit forecast here is not forced to
zero as in the earlier experiment, and growth in output stays above the

overall average until late in 1986.

CONCLUSION

Our examples show that Bayesian vector autoregressive models
yield no automatic causal interpretations when used for policy analy-
sis. They do, though, provide a detailed characterization of dynamiec
statistical interdependence of a set of economic variables, information
that may help in evaluating causal hypotheses without itself containing
any such hypotheses.
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APPENDIX: THE DATA

The data for this study consist of 10 series of monthly obser-
vations for the period 1948:1 through 1983:3. We took some of the
series directly from the sources described below and constructed others
by interpolating quarterly data. Data published in seasonally adjusted
form we used in that form. Data published only in not seasonally ad-
justed form for which there was evidence of a seasonal pattern we ad-
justed ourselves. Details of the data construction and adjustment
procedures are given below. (The data set itself, which is based on
data published as of May 1983, is available from Litterman for a nominal

charge.)

The four series that we had to interpolate are real GNP, the
change in business inventories, the GNP deflator, and the flow of total
nonfinancial debt. Real GNP is published as the sum of nine components,
three of which are components of consumption and are available on a
monthly basis. The other six components--one of which, the change in
business inventories, we included separately--and the GNP deflator we
interpolated from the quarterly national income and product accounts.
The flow of total nonfinancial debt we interpolated from a quarterly
series included in the Federal Reserve flow of funds accounts. The
interpolations used related monthly series following the procedures of
Chow and Lin (1971) and Litterman (1983).

Seasonal adjustment was required for federal government re-
ceipts and expenditures and several of the monthly series used in the
interpolations.

INTERPOLATION

We used two interpolation procedures: the Chow-Lin (CL)
procedures, in which errors are assumed to follow a first-order Markov
process, and a variation of the CL procedure, in which the error process
follows a random walk with a first-order Markov driving process (the RW
procedure). When interpolation was required, we first tried the RW
procedure. It is based on the assumption that the unobserved monthly
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series of interest, y., is related to a vector of observed monthly

series, Xy, in this way:
yt = XtB + Ut.
The error process, ug, is assumed to follow a random walk:

u, = u + &

-1 t

where e is a first-order Markov process:

et = aet 1 + Vt'

Litterman (1983) shows how to estimate a«, 8, and the monthly values of
¥, given quarterly averages of y and monthly values of x. He finds
that, relative to other standard approaches, this procedure reduces the
interpolation error in several cases where quarterly averages of ob-
served monthly data are considered. In cases where the estimated Markov
parameter, «, for this procedure was negative, however, the RW procedure
did not perform well. Therefore, in such cases, we used the CL proce-
dure. In the CL model, the error term, u., itself follows a first-order

Markov process.

SEASONAL ADJUSTMENT

Where seasonal adjustment was necessary, we followed a fre-
quency domain method based on the work of Nerlove (1964) and Geweke
(1978). These are the steps:

1. Remove the deterministic constant, trend, and monthly sea-
sonals.
2. Use a short-order autoregressive representation with seasonal

lags to forecast and backcast two years of data.¥*

#¥Early versions of the data set, including those used for the
out-of-sample forecasting experiments, left this step out and padded
with zeros rather than forecasts. The seasonally adjusted series gen-
erated without this step suffered at the ends of the data periods from a
detectable modulation of the seasonal pattern. This led us to adopt the
second step above.
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3. Fourier-transform the series with the deterministic part
removed and extensions appended, and estimate the spectrum.

4, Divide the Fourier transform of the data at seasonal frequen-
cies by the ratio of the estimated spectrum to an estimate of
the nonseasonal spectrum at that frequency. Obtain the
estimate of the nonseasonal spectrum as a quadratic curve fit
across seasonal frequencies to periodogram ordinates at each
end of the seasonal band.

5. Transform the adjusted Fourier transform back to the time

domain, and add the constant and treng.

INDIVIDUAL SERIES

Money Supply: Seasonally adjusted monthly values for the M1

measure of the money supply, as published by the Board of Governors of
the Federal Reserve System, were used for the period from 1959:1 to
1983:3. Values for M1 during the period 1948:1 through 1958:12 were
generated by scaling the old M1 series by the ratio of the new to the
old value for 1959:1.

Treasury Bill Rate: This series is monthly averages of yields

on three-month U.S. Treasury securities.

Stock Price Index: This series is monthly averages of the

Standard and Poor's index of 500 securities prices.

Flow of Total Nonfinancial Debt: This is an interpolated

version of the quarterly flow of total nonfinancial debt published in
the flow of funds data set by the Federal Reserve Board. We constructed
the quarterly series by summing seasonally adjusted nonfinancial sector
credit market debt and foreign corporate equities and subtracting credit
market funds raised by foreigners. These series are labeled F394104005,
F263164003, and F264102005, respectively, in the flow of funds accounts.

The related monthly series used in the CL interpolation are
commercial and industrial loans, the change in consumer credit outstand-
ing, the seasonally adjusted consumer price index, the Treasury bill

rate, M1, stock prices, and a constant and trend.
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Because flow of funds data are released with essentially a
one-quarter lag, the equation relating monthly variables to the quarter-
ly variable together with the projected residuals was used to extend the
data set through the first quarter of 1983, for which no quarterly
observation was yet available. Also, the flow of debt series begins in
1952, requiring the use of the equation in a similar manner to extend

observations back over the first four years of our sample.

Trade-Weighted Value of the U.S. Dollar: The U.S. Commerce

Department's index of the weighted average exchange value of the U.S.

dollar was used for the period for which it is available, 1967:1 through
1983:3. For the earlier period, a trade-weighted dollar was constructed
following the usual formula and weights, except that it was based on
exchange rates only between the United States and Germany, France, and
the United Kingdom, rather than between the 10 countries in the current
index. The constructed series was scaled so that the value for 1967:1
coincides with the current index. Over the period 1967:1 through
1969:12, the actual and the constructed indices moved quite closely,

differing at any point by less than .3 percent.

Federal Government Qutlays: Federal government budget outlays

on a unified basis, not seasonally adjusted, are available from the U.S.
Treasury Department monthly from 1968:2. Annual values are published
for the prior years in our sample. We linearly interpolated the earlier
annual data using the monthly outlays series on a cash basis, which is
available for this period. The entire monthly series was then seasonal-

ly adjusted as described above.

Federal Government Receipts: The federal government budget

receipts series was constructed using data analogous to that available

for outlays, and it was also seasonally adjusted as described above.

GNP Deflator: The monthly GNP deflator is based on an RW

interpolation using monthly data on the consumer price index, the pro-

ducer price index, and a constant and trend. The two monthly price
indices are published as levels and not seasonally adjusted and thus
were seasonally adjusted as described above prior to use in the inter-

polation.
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Change in Business Inventories: The monthly change in busi-

ness inventories was generated by summing monthly series on nondurable
and durable changes in business inventories, which were each separately
interpolated. The nondurable inventories series is based on a CL inter-
polation. The related monthly series are the net change in inventories
on hand and on order, wholesale inventories on nondurable goods, total
inventories of nondurable goods, finished inventories of nondurable
goods, and a constant, trend, and dummies for constant and trend over
the period 1948:1 through 1957:12, during which the finished goods

inventories are not available.

The change in business inventories of durable goods series was
generated using a CL interpolation. The related monthly series are the
net change in inventories on hand and on order and the series for dur-

able goods corresponding to those used in the nondurables interpolation.

Real GNP: In addition to the change in business inventories,
five other components of real GNP were interpolated: real business
fixed investment, residential investment, government purchases, exports,
and imports. Real business fixed investment was interpolated using the
CL method. The related monthly series include the index of industrial
production, the level of contracts and orders for plant and equipment in
1972 dollars, the composite index of capital investment commitments, new
orders for capital goods, the Treasury bill rate, commercial and in-
dustrial loans, and a constant and trend.

The interpolation of residential investment used the RW
method. The related monthly series are new private construection in
constant dollars; total private construction put in place, which was
seasonally adjusted and deflated using the GNP deflator; expenditures on
private construction of residential buildings, which was deflated using
the GNP deflator; and a constant, trend, and dummies for periods over

which the monthly series were not available.

The interpolation of government purchases presented a problem
because we could not find series that would explain its movements. We

decided to use the RW interpolation method with a constant and trend.
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Exports and imports were interpolated using the CL method.
The related series are merchandise trade exports and imports, respec-
tively, with constant and trend. Both trade series were deflated using
the GNP deflator.
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Table

Univariate Forecasting Performance

Variable Period 1 Period 2 Period 3 Overall

I-step horizon

Real GNP 965 796 813 863
GNP deflator .204 .136 .208 186
MI .292 321 498 381
Stock price index 2.895 3.280 3.695 3.306
Treasury bill rate 231 .233 871 537
Trade-weighted dollar 295 355 1.981 L.174
Flow of nonfinancial debt 18.863 8.945 7.155 12.741
Change in inventories 4.967 4,981 5.531 5.542
Federal outlays 5.209 3.839 4,383 4.512
Federal receipts 4.300 4.330 3.905 4.183
Log-determinant -69.035 -70.741 -62.819 -64.395
3-step horizon
Real GNP 1.492 1.059 1.337 1.309
GNP deflator .506 .368 495 460
M1 651 616 1.015 782
Stock price index 5.901 6.608 7.532 6.714
Treasury bill rate .502 .588 1.849 1.157
Trade-weighted dollar 562 753 4.429 2,614
Flow of nonfinancial debt 40.328 16.797 14.865 26.642
Change in inventories 5.868 5.507 8.135 6.627
Federal outlays 5.647 4,819 4,532 5.022
Federal receipts 5.279 5.263 4.178 4.934
Log~determinant -58.277 -60.593 -52.840 -53.523
6-step horizon
Real GNP 2.549 1.490 2.035 2.071
GNP deflator 968 673 885 851
Ml 1.151 1.137 1.303 1.208
Stock price index 9.598 10.751 11.487 10.641
Treasury bill rate Q10 .902 2.410 1.576
Trade-weighted dollar 882 1.060 6.811 4.012
Flow of nonfinancial debt 46.127 21.069 18.809 31.227
Change in inventories 6.700 5.866 9.282 7.427
Federal outlays 9.336 6.986 6.224 7.631
Federal receipts 8.073 6.090 4.932 6.496
Log-determinant -50.336 -54.638 -47.249 -46.909
12-step horizon
Real GNP 4.564 2.749 3.176 3.581
GNP deflator 2.880 1.349 1.722 2.088
Ml 2.335 2.041 1.875 2.093
Stock price index 17.924 14.725 15.505 16.109
Treasury bill rate 1.184 1.340 2,717 1.878
Trade-weighted dollar 2.315 1.275 9.811 5.866
Flow of nonfinancial debt 64.439 32.025 24.778 43.939
Change in inventories 7.680 6.562 10.340 8.346
Federal outlays 16.970 11.555 10.316 13.265
Federal receipts 19.9504 10.006 ‘ 7.516 13.574

Log-determinant -39.560 -48.346 -42.100 -38.284




Table II

Final Specification Forecasting Performance

Variable Period | Period 2 Period 3 Overall

{-step horizon

Real GNP 925 .300 759 .831
GNP deflator .199 131 210 133
Ml .269 320 474 365
Stock price index 2.8332 3.294 3.734 3.308
Treasury bill rate .229 241 LB47 525
Trade-weighted dollar 319 323 1.957 1.160
Flow of nonfinancial debt 18.087 8.248 6.694 12,110
Change in inventories 4.839 4.963 6.446 5.465
Federal outlays 4,879 3.500 4,485 4.327
Federal receipts 4.267 4.325 4.008 4.202
Log-determinant -69.497 -71.310 -63.114 -64.829
3-step horizon
Real GNP 1.355 1.083 1.178 1.211
GNP deflator 506 329 518 459
M1 : 580 625 Suy 735
Stock price index 5.841 6.567 7.556 6.692
Treasury bill rate 493 .J60 1.746 1.096
Trade-weighted dollar 670 677 4.339 2.565
Flow of nonfinancial debt 36.154 13.336 13.101 23.499
Change in inventories 5.610 5.402 8.247 6.549
Federal outlays 5.568 4.204 L.ule 4,767
Federal receipts 4,931 5.151 4.440 4.8350
Log-determinant -59.240 -61.680 -53.379 -54.349
6-step horizon
Real GNP 2.172 1.677 1.729 1.872
GNP deflator 826 .567 976 .808
ML 1.073 1.205 1.234 1.173
Stock price index 9.709 10.563 11.721 10.6%6
Treasury bill rate 810 793 2.273 1.466
Trade-weighted dollar 1.135 .990 6.666 3.946
Flow of nonfinancial debt 39.045 15.522 14.429 25.649
Change in inventories 6.140 5.8399 2.290 7.276
Federal outlays 8.794 5.145 5.53% 6.696
Federal receipts 6.900 5.969 5.670 6.202
Log-determinant -52.102 -55.858 -47.723 -48.051
12-step horizon
Real GNP 3.500 3.235 3.113 3.287
GNP deflator 1.627 1.122 1.992 1.620
Ml 2.150 2.339 1.925 2.145
Stock price index 17.891 14.460 16.367 16.300
Treasury bill rate 1.033 {.108 2.469 1.672
Trade-weighted dollar 1.984 1.187 9.510 5.651
Flow of nonfinancial debt 53.879 20.877 8.594 35.045
Change in inventories 6.644 6.800 10.318 8.100
Federal outlays 17.870 7.174 '8.061 12.052
Federal receipts 14,370 9.269 9.113 11.187

Log-determinant -44,207 -50.265 ~41.723 -40.680
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Table IX

Standardized Shocks Generating the Model Forecast
Conditional on the CBO's Projections, Using the V Matrix

1983 1984
Variable 1 2 3 6 9 12 6 12
Ml -9 -4 -3 -3 -3 -4 -7 -3
STOCKS -4 -3 -3 -3 =3 -3 -2 -1
TBILL -.6 -6 -5 -9 -.6 -4 .1 -2
DEBT .1 A .1 3 2 -.0 -1 -1
PGNP 3 3 3 R 3 2 -1 1
CBI -0 -0 -0 A -1 -0 -2 -4
RGNP -3 -7 -5 -8 -6 -4 -6 -5
OUTL .0 .0 .0 -l -2 -.0 .0 0
RCPT -0 -.0 .0 .0 A .1 .0 .0

TRDOL .2 .1 2 2 2 0 .0 .0
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Charts 1'and 2

How Forecast Accuracy Varies
With Two Dimensions of the Prior

Chart 1. Front View Chart 2. Back View

DECREASE. 1N ACCURRCY (96)

DECRERSE IN ACCURRCY (3)
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Charts 35-45
impulse Response Functions

Chart 35. Responses of Real GNP

To Innovations in
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Chart 35. Responses of Real GNP
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Chart 36. Responses of the GNP Deflator
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Chart 37. Responses of the Money Supply (1)

To Innovations in
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Chant 37. Responses of the Money Supply (1)
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Chart 38. Responses of Stock Prices (Standard & Poor's 500 index)

To innovations in
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Chart 38. Responses of Stock Prices (Standard & Poor's 500 index)
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Chart 39. Responses of the Treasury Bill Rate @-Month)
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(Continued)

Chart 39. Responses of the Treasury Bill Rate (3-Month)
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Chart 40. Responses of the Change in Business Inventories (1972 Doltars)
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(Continued)
Chant 40. Responses of the Change in Busineass Inventories (1972 Dolars)
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Chart 41. Responses of the Value of the Trade-Weighted Dollar

To Innovations in
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Chart 41. Responses of the Value of the Trade-Weighted Dollar
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Chart 42. Responses of Federal Government Receipts

To Innovations in
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Chsrt 42. Responses of Federal Government Receipts

To innovations in
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Chart 43. Responses of Federal Government Outlays

To innovations in
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Chart 43. Responses of Federal Government Outlays
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Chart 44. Responses of the Federal Government Deficit
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(Continued)
Chart 44. Responses of the Federal Government Deficit
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Chart 45. Responsas of the Flow of Tota! Nonfinancial Debt

To innovations in
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Chart 45. Responses of the Flow of Total Nonfinancial Debt

To innovations in
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Chart 46..-
Construction of an Implausibility Index

The implausibility index is a measure of the probability the model gives to
outcomes on the downhill side of a tangent to the forecast's level curve at
the point of a conditional projection.
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Charts 47-57
Forecasts and Conditional Projections

%Z 50% Probability Bands for Unconditional Forecasts Made in 1982:12

% Chart 47. Real GNP Growth (1972 Dotlars)
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% Chart 48. Inflation (GNP Defiator)
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Chart 49. Money Supply Growth (M1)




50% Probability Bands for Unconditional Forecasts Made in 1982:12

Chart 50. Stock Price Growth
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3 50% Probability Bands for Unconditional Forecasts Made in 1982:12

%  Chart 51. Treasury Bill Rate (3-Month)
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50% Probability Bands for Unconditional Forecasts Made in 1982:12

Chart 53. Growth in the Value of the

% Trade-Weighted Dollar
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50% Probability Bands for Unconditional Forecasts Made in 1982:12

Chart 54. Growth in Federal Government
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50% Probability Bands for Unconditional Forecasts Made in 1982:12

$Bil. Chart 56. Federal Government Deficit
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Chart 57. Growth in the Flow of Total
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