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Introdﬁction

A distinguishing characteristic of econometric models that
incorporate rational expectations is the presence of restrictions
acrossgs the parameters of different equations. These restrictions
emerge because people's decisions are supposed to depend on the
stochastic environment which they confront. Consequently,
equations describing variables affected by people's decisions
inherit parameters from the equations that describe the environ-
ment. As it turns out, even for models that are linear in the
variables, these cross—equation restrictions on the parameters
are complicated and often highly nonlinear.

This paper proposes a method for conveniently characteriziﬁg
cross~equation restrictions in a class of linear rational
expectations models, and also 1indicates how to estimate
statistical representations satisfying these restrictions. For
most of the paper, we restrict ourselves to models in which there
is an exact linear restriction across forecasts of future values
of one set of variables and current and past values of some other
set of variables. While probably only a minority of rational
expectations models belong to this class, it does contain
interesting models that have been advanced to study forward
markets, the term structure of interest rates, stock prices,
consunption and permanent income, the dynamic demand for factors
of production, and many other subjects.

It {18 useful to compare the class of exact models with the
class studied by Hansen and Sargent (1980). The differences lie

entirely in the interpretations of the "error terms” in the



equations that are permitted. In Hansen and Sargent (1980),
randoﬁ processes which the econometrician treats as disturbances
in decision rules can have a variety of sources. Disturbance
terms can be interpreted as reflecting shocks to technologies or
preferences observed by private agents but not by the econome-
triclan. Disturbances can also be interpreted as reflecting
interactions with "hidden” decision variables which are
simultaneously chosen by private agents but unobserved by the
econometrician. Finally, disturbances can be interpreted, along
the lines of Shiller (1972), as reflecting that in forecasting
the future, private agents use larger information sets than the
econometrician can consider because of data limitations. of
these alternative interpretations of error terms, only the last
one can be accommodated within the class of exact models of.the
present paper. While this limitation on the permissible inter-
pretations of error terms excludes many rational expectations
models, a variety of interesting examples still remains within
the general class of exact linear rational expectations models.
In linear rational expectations models, the cross—equation
restrictions can be characterized very conveniently by working in
terms of a vector moving average representation for the variables
being modeled. By straightforward applications of the
Wiener-Kolmogorov least squares prediction formulas, these
restrictions can readily be deduced. Once the restrictions are
deduced, the parameters of the model can be estimated maximizing

one of various approximations to the likelihood function. In



this paper we focus on the frequency domain approximation
proposed by Hannan (1970).

The ease of characterizing the restrictions and calculating
egstimates 18 a great virtue of spécifying the model in vector
moving average form. However, an identification question must be
addressed before this strategy can be implemented. Without a
priori restrictions on- their parameters, many vector moving
average representations are consistent with a given set of second
moments. A natural and practically important question is whether
the cross—equation rational expectations restrictions provide
enough prior information to identify a unique moving average
representation. For the case of exact linear rational
expectations models, Section 2 provides three lemmas that
characterize identification. Insofar as the identification
question is concerned, there are substantial differences between
exact rational expectations models and models that admit one or
more of the additiomnal interpretations of the error terms
described above. It is the special nature of the identification
problem in these exact models, and not anything special about the
appropriate methods either of representing the models or of
estimafing them, that causes us to restrict this paper mainly to
analyzing exact linear rational expectations models. 1In Section
5, we briefly indicate how both our methods for model
specification and estimation carry over to 1inexact linear
rational expectations models.

While it is not their only purpose, the methods described

here lead to straightforward tests of both the model wunder



consideration and the rational expectations hypothesis. The
vector moving average representation that incorporates the
rational expectations restrictions is nested within less
constrained vector moving average representations. A likelihood
ratio statistic can be computed to test the model. In the
context of applications of exact linear rational expectations
models to stock prices and the term structure of interest rates,
the likelihood ratio test 1s in a relevant sense more powerful
than are the variance bounds tests proposed and used by LeRoy and
Porter (1979), Shiller (1979a), and Singleton (1980a). In
Section 4{ we briefly indicate the relation between the variance
bounds and likelihood ratio tests.

The main goal of this paper 1is to describe procedures for
estimating complete linear vector stochastic processes subject to
rational expectations restrictions. As Geweke (1979), Shiller
(1979a), and Hansen (1980) have indicated for several special
examples of our general model, it is possible to devise powerful
tests of such models without estimating the complete vector
process subject to the model's restrictions. However, for many
applications, the analyst wants more than just a test of the
model, and desires a complete representation of the vector
process. Indeed, our interest in the identification and
estimation of constrained moving average models is not entirely
motivated by the exact linear rational expectations models that
occupy most of our attention in the present paper. As we
indicate in Section 5, the restrictions that emerge in the

present models strongly resemble those that characterize rational
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expectations models which can accommodate additional
interpretations of disturbance Eerms (e.g.' Hansen and Sargent
(1980)). This makes constrained moving average estimation a more
generally useful method for estimating the parameters needed to
overcome Lucas's (1976) critique of econometric policy evaluation
procedures.

For our empirical examples, in Section 3 we return once more
to that serviceable laboratory for students of expectations, the
term structure of iIinterest rates. Our main intentiomn 1is to
illustrate our procedures with the help of a convenient body of
data. As the various examples of Section 1 are intended to
emphasize, the procedures are also applicable to many other

examples.
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1. General Model
We begin by specifying a general model and by giving some

examples. Let us assume that y = {yt: t e J} is a discrete

time vector stochastic process where J is the set of integers.

@

_1 pu—
We partition y into (yi, yé)'. Let A(L ") = ¢ a,L 3 where L 1is

k|
- j=0
the lag operator and hence L 3 shifts the time index of a
variable forward j periods. We assume that A(z—l) can be

represented as

-1 Al(z)

(1.1) A(z ) = A (z)
2

where Al(z) is a square matrix polynomial conformable with Y1 and
Az(z) ig8 a scalar polynomial with zeroes inside the unit circle.

Furthermore, we assume that the maximum order of the polynomial
elements of Al(z) is 1less than the order of Az(z). These
agsumptions guarantee that the Laurent series expansions about

zero in a region containing the unit circle of the elements of

Al(Z)

(1.2) K;??T

are indeed one-sided in nonpositive powers of z. Denote this ex-

+o @
pansion I ajz_j. Let B(L) b Lj where b, has the same
j=0 j:O j j

row dimension as y, and column dimension as Yoy We assume that

Hi

B(z) can be represented as



B, (2)
(1.3) B(z) = W

where Bl(z) is a matrix polynomial and Bz(z) is a scalar
polynomial with zeroes all outside the unit circle. This latter
assumption guarantees that B(z) has a power series representation

appropriate for a region containing the unit circle. Let this

L]

power series representation be given by g bjzj.
j=0
Suppose that our theorizing informs us that

(1.4) BIA(L D)y la,] = B(L)y,,

where Rt is an information set that 1includes at 1least
{yt,yt_l,...} and E[']nt] is the =expectations operator
conditional on ﬂt. We add the assumption that y is a linearly
indeterministic, mean zero, covariance stationary stochastic
process.1 This allows us to exploit convenient results from
linear, least squares prediction theory. Letting E[°|¢t] denote
the linear least squares projection on @t, where Qt is the closed
(under the root mean square norm) linear space generated by {yt,
Vea1> ee+}l, equation (1l.4) implies that

(1.5) E[A(L'l)ylt|¢t] = B(L>Y2t'2

Equation (1.5) can be derived from (1.4) by employing a simple
iterated projections argument. From Wold's Decomposition Theorem

we know that y can be represented as
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Yie ¢, (L) Ye
1.6 =
(1.6) Yo ¢, (L)
or
Y, = C(L)ut
where u, € Qt’ Eutué = I, u 1s serially uncorrelated, C(L) is

one—8ided in nonnegative powers of L, and u has the same

dimension as y.

Equation (l1.5) imposes some restrictions on the matrix

polynomial C(L). First, write

(1.7) Yig = Cl(L)ut

and note that

(1.8) A(L_l)ylt = A(L_l)Cl(L)ut.

Using the Wiener—Kolmogorov prediction formula,4 we know that
(1.9) efat™ by, fe.1 = 1at™he, (1], u
lt t 1 + t

where | is the annihilation operator5 that instructs us to

1

ignore nonnegative powers of L. Second, write

(1.10) Yo = CZ(L)ut

t

and note that
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(1.11) B(L)y2t = B(L)CZ(L)ut'

Using relation (l1.5) and equating coefficients in equations (1.9)

and (l1l.11) we obtain
(1.12)  B(L)C, (L) = [A(L™1)e, (L)1,

Equation system (1.12) summarizes the restrictions that the
rational expectations model imposes on the vector moving average

representation.

It is now of interest for us to consider some examples.

Example (i): Relationship Between a k Period Forward Price and

a k~Step~Ahead Spot Price.

Let Y1¢ be the spot price at time period t and let the first
element of Yo, be the k—-step-ahead forward price. The remainder
of the Y9¢ vector can contain other information available to
economic agents. Rational expectations theorizing can lead one

to the following model:6

(1.13) E[y1t+k|ﬂt] = b0y2t

where b0 = [1,0] implying that

(1.14) E[A(L"l)y1t|¢t] = B(L)y,,
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where A(L_l) = L-'k and B(L) = bo. In this case

c Lj

-1 _
(1.15) [A(L “)c(n)l, = K+

i > 8

j=0

oo
where C(L) = % chj. This provides us with a simple, conveni-
j=0

ent expression for restrictions (1.12).

Example (ii): Relationship Between Long- and Short-Term Interest

Rates.
Let Y1t be the one-period interest rate at time t and let
the first element of Yoe be the k-period interest rate. Sargent
(1979a) has employed the following model of the term structure of

interest rates:

1 -
(1.16) E[E(ylt + T1e+1 oo F y1t+k—1)|9t] B b03'21;

where b, = [1,0]. This implies that

- -1
(1.17)  E[A(L Dy, le,] = B(L)y,,

-1y .1 . 1.-1 1, -k+l _
where A(L 7)) = E + X + ... + EL nd B(L) bO'

Shiller (1979a) has employed a similar model in which

\

1-y k-1 _
(1.18) E[l_yk(ylt HERLS PTSERAREL LR R S PSP L LS I PSS

where 0 < y < 1 and bo = [1,0]. Thus
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(1.19) E[A(L'l)yltl¢t] = B(L)y,,

where  A(LTY) = 1T (1 4yl o4 L4 yRTITRRL) L pery = by -
l-y
Explicit expressions for restrictions (1.12) can be obtained in a

straightforward manner.

Example (iii): Stock Prices and Dividends

Let Y1 be the rate of dividends on a stock at time t and
let the first element of Yo, be the price of the stock. Shiller

(1979b) has studied the following model of stock prices:

(1.20) E[ ;
jz

b 0 <y <1,

J
LR 0¥2¢

0

where bo = [1,0]. This model implies that

(1.21)  E[AGL Dy, le.] = B(L)y,,

1) = 1 7— and B(L) = by. In this model, y is

(L - yL )
the discount factor applied to dividends.

where A(L_

Example (iv): Consumption and Permanent Income

The following example derives from Hall's (1978) version of

the permanent income theory of consumption. Let L be labor

income at t, let c. be consumption, and 1let At be nonhuman

assets. Then consider the consumption function



(1.22) c = B8 A+ BpE[ = (1 + p)—jW

t 1L + p §=0 t+jlnt]’

where p 1is the discount rate used to define permanent labor
income, and B is the marginal propensity to consume out of
permanent income. This model falls within our framework, upon
making the following identifications: let the first two

components of Yoe be (c At), and set Vi =W

t? t?

1 -1

Ly = go/i(1 - (1 + o) 7Yy,

(1.23) A(L™

(1.24) B(L) = [1,- Bp/(1l + p),0].

The applicability of both Hall's testing procedures and the
statistical model of the present paper depend critically on the
consumption function being an exact equation, or equivalently, on

"transitory consumption” being identically zero.

Example (v): Demand Functions for Factors of Production

Sargent (1978b) and XKennan (1979) have estimated 1linear
demand functions for labor that are derived from optimizing a
quadratic objective function subject to linear constraints. We
focus on Sargent's version, though by reinterpreting v, below as

output, Kennan's example fits our framework also. Asguming no

shocks to technology and a single factor of production, the

demand function turns out to be

- _ A > i
e lnt—l 8 E [jEO (Av) Wt+j|9t] ’
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where 0 < 2 <1, 0 < vy <1, § > 0, n is the stock of employment
at t, and v, is the real wage. To put this model within our
framework, let the first element of Yor be n., set w_ = y;.,
Aty = <A a7, and B(L) = (1 - az,01.

Multiple factor versions of this example along the lines of
Hansen and Sargent (198la) can easily be constructed. This list
of examples could readily be extended to incorporate versions of
linear rational expectations models that have been wused to
analyze a wide variety of macroeconomic and microeconomic
phenomena.7 The preceding examples are sufficlient to illustrate

the variety of models that reside within the <class we are

studying.
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2a. 1Identification

We study models with vector moving average representations
(2.1) Ve = C(L)ut

where y is an (n x 1) covariance stationary vector stochastic

-]

process with mean zero, C(L) = jiochj where cj is an (n x n)
matrix and L is the lag operator, and where u is an (n x 1)
vector white noise with Eu u! = 0 for t £ s, Eu,ul = I for all t
and Eut = 0 for all t. The theoretical spectral density matrix
of vy is8 given by

(2.2) S(w) = c(e ®)c(e 1)

where the prime denotes transposition and complex conjugation,
and where the spectral density matrix is defined as the Fourier

transform of the cross—~covariogram of y,

(2.3) S(w) = I Ey y! e .

Without imposing constraints on the cj's it is well known
that there are multiple choices of C(L) that will satisfy (2.2).
Loosely put, there 1is8 an equivalence class of matrix lag
operators that satisfy (2.2), members of which can be generated

from another by post multiplying C(L) by matrices of "Blaschke

factors.” Since the spectral density matrix S summarizes all of
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the population covariance properties of the y time series,
alternative choices of matrices C(L) in the equivalence class
characterized by (2.2) are observationally equivalent. Thus
there 1is an identification problem in representing y as a
one-sided moving average of white noise disturbances. In many
circumstances, especially in problems involving prediction, this
identification problem is partially resolved by choosing a
"fundamental™ representation, that 1is, a C(L) for which the
asgsociated contemporaneous white mnoise u, lies in the space
spanned by {yt, Ye-1> esole

In this paper, we are interested in estimating vector moving
average representations in which rational expectations and
economic theor§ impose a set of cross—-equation restrictions on
C(L). As a prolegomenon to estimation, we study the question of
whether these cross—equation regstrictions eliminate the
multiplicity of moving average representations. Put somewhat
differently, the question is whether, assuming that the rational
expectations restrictions are correct, there 1is among the
equivalence class of C(L)'s that satisfy (2.2), a unique C(L)
that satisfies the rational expectations restrictions. The
answer to this question is somewhat ambiguous. However, we shall
show that for one class of parameterizations of C(L) that might
seem Iinteresting for applied work, the cross—equation rational
expectations restrictions do not eliminate the identification
problem associated with the multiplicity of moving average

representations.



As mentioned in Section 1, it is known from linear
prediction theory that linearly indeterministic, covariance
gtationary stochastic processes have multiple moving average
representations. The problem is that as givem in (2.1) C(L) and
u are mnot unique. There 1is both a relatively trivial and a
nontrivial sense in which this is true. We describe the trivial

sense first. Let D be an orthogonal matrix and form

(2.4) u: = Du,_.

Note that

gk = !

(2.5) Eutut EDututD
= DD'
= T.

Let C*¥(L) = C(L)D' and we obtain the equivalent representation

(2.6) Y. = C*(L)ut = C(L)D'Dut = C(L)ut.

Thus, the relatively trivial identification problem emerges
because each of the white noise vectors generated by
multiplication by an orthogonal matrix spans the same linear
space, i.e., each one gives rise to the same information space.
To proceed with estimation, sufficient normalizations must be
imposed to eliminate this nonuniqueness, trivial though it may

be.
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The nontrivial sense in which multiple moving average
representations emerge 1s that y can be represented in terms of
different vector white noises that span different linear spaces.
In particular, Wold's Decomposition Theorem informs us that there

exists a representation such that u e ¢

c £ i.e., u, can be

recovered from current and past observations of vy. This 1is
referred to as a fundamental representation. However, there also
exist moving average representations that are not fundamental.
In these nonfundamental representations the current and past u's

span a space that is strictly larger than Qt and in particular u

t

¢ L
The restrictions we derived in Section 1 are appropriate for
a fundamental representation. This raises a question as to

whether those restrictions are invariant under the multiplicity
of representations. If we conclude that the restrictions hold
for one of the representations, can we expect them to hold for
another one‘of the moving average representations? There are two
approaches to answering this question. The first approach is to
employ transform methods, since shifting from one representation
to another can be accomplished via multiplication by orthogonal
matrices and Blaschke factors.8 The second approach involves
iterated projection arguments.9 We will study this question
first wusing projection arguments and then using =2z transform
machinery. It turns out that the z transform approach provides

us with a more complete answer.
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In Section 1 we derived the following restrictions:

(2.7)  B(LIC,(L) = [A(L D)e (L),

Suppose that these restrictions hold for a particular moving
average representation, not necessarily a fundamental one. Then
it 1is true that these restrictions must hold for any other
representation obtained by multiplying the vector white noise by
an orthogonal matrix. The argument to prove this proposition can
proceed in two ways. One strategy 1is to note that any white
noise generated by an orthogonal transformation of the initial
white noise must span the same linear sgpace. Restrictions (2.6)

imply that
~ -1
(2.8) E[A(L )y, 12T = B(L)y,,

where Zt is the linear space spanned by current and past values
of the white noise u, and where u, € Qt. Multiplying u by an
orthogonal matrix will give rise to a new noise u*, but the new
information set zi spanned by (ut, ut_l, ees) will be identical
to Xt. That restrictions (2.6) continue to hold is just a simple
application of the Wiener—-Kolmogorov prediction formulas.
Alternatively, the proposition can be verified mechanically by

carrying out the multiplication of C(L) by the orthogonal matrix.

We state the conclusion in Lemma 1.
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Lemma 1: Suppose yt = C(L)ut where C(L) satisfies (2.7) and u is
a white noise. Let D be an orthogonal matrix and let ut = Dut

and C*¥(L) = C(L)D'. Then C*(L) satisfies (2.7).

The second lemma we discuss deals with the nontrivial sense
in which there are multiple representations. It states the

following:

Lemma 2: Suppose Y, = C(L)ut where C(L) satisfies (2.7) and u is

a white noise. Let u* be fundamental for y and let C*(L) be an

operator C*(L) = 5 c‘:*]Lj such that Y. = C*(L)u*t. Then C*(L)
j=0
satisfies (2.7).

The proof of this lemma is provided in Appendix A. It turns
out to be a simple application of an iterated projections

argument. After noting that Zt = ¢, C then the proof is

t t’
straightforward. The message that emerges from Lemma 2 is that
once we know that the restrictions hold for a particular moving
average representation, we know they must hold for any
fundamental representation. A stronger result, that if the
regstrictions hold for one moving average representation they must
hold for any other one, is apparently not true. However, it
turns out that 1if we confine the class of moving average
representations in an interesting way, the restrictions hold for

all such representations. Before formally considering this

result, it is fruitful to focus on some examples.
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Example (i): A case in which restrictions holding for a

nonfundamental representation implies that they hold for a

fundamental representation.

For our first example, suppose that we have rational

expectations restrictions of the form
(2'9) E[Y1t+1|9t] = Yz .

t

Also assume that

1 + 5L + 6L2 1

Y1 u
(2.10) tl = le
Yo ¢ 5 + 6L 0 Uy e
where Eu2 = Eu2 = 1, Eu,. u = 0 and (u u,) is a vector
1t 2t ? 1t 2t ’ 1? 2
white noise. We assume that u1t and L are functions of

elements in agents' information set ﬂt. ‘Then equations (2.9) and

(2.10) imply that

(2.11)  Ely; 12,1 = v,,

where Et is the closed linear space generated by {ult’ Ui

crey UgLs Uy s eeetes Using (2.10), we have

(2.12) + 5u; +6u;_; tu

Yie+1 T Y1e+1 & 1 2¢+1°

Taking the linear least squares projection onto Zt gives
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~ 2
1 + 5L + 6L
E[3’1t;+1“:t] Supy *obuy [ 3 lugy-

(2.13)

Using representation (2.10) we also verify that

(2.14) 5ul + 6ul

t e=1 - Yoo

Thus, restrictions (2.11) are satisfied by represenfation (2.10).

Repregentation (2.10) implies that current and past (yl,
yz)'s can be expressed in terms of current and past (ul, uz)'s.
This yields the implication that Zt P Qt’ i.e., that at least as
much information 1s contained in Et as in Qt. Notice that a

fundamental represention for (yl, y2) is given by

2 1 1 6+51L
—_ —_— —_— *
Vit 1+3L+6L" 1 72 72 5+61 © ufy
(2.15) =
5461 o [|-——= L 1] o 1 %
Y2t Y2 V2 Y2t
Lo + 512 L2 + 5L + 6 *
72(6L + 5L7) 72¢ L)) uie
—1(6 + 5L) L5 + 6L ) *
V2 /2 Y9¢
= C*(L)u*
where
. 5 + 6L 0 1 1
Ul 6 + 5L ) ) U
(2.16) = .
1 1
* — —_
uf, 0 1 72 72 Uy
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In (2.16) u* igs obtained from u wusing matrix lag polynomials

formed with "Blaschke factors."” The theoretical spectral density

for u* is given by

s+6e 0 ] 1 i || L 1 || steet™
150-10 72 VI || 7T 72 || arsliv
(2.17)
1 1 11
0 il 7= |l7= 72{|° L
=1

verifying that u* is a vector white noise. The determinant of

C*¥(z) is given by
(2.18) det C*¥(z) = —(6 + 5z).

Since det C*(z) has its zero at z = =-6/5 which is outside the
unit circle, the matrix polynomial C*(L) has a one—-sided inverse.

This verifies that u* is fundamental for y*. Finally,

2

1(6L + 5L = 1

7z l vate + 5L)
+

(2.19)

V2 L

2
1(2 + 5L + 6L7) = 1
-5 ]-'_ —/2(5 + 6L)

verifying that the restrictions (2.7) hold for C*(L). This
example, therefore, illustrates the implications of Lemma 2: the
regstrictions hold for a nonfundamental representation, and

therefore also for a fundamental representation.
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Example (ii): An example where restrictions hold for a

fundamental representation, but not for a nonfundamental

representation.

Suppose that

1 - 512 + 21
Y1t 2 - L Y1¢
(2.20) =
Yoe 1 - 2L 0 Uy,
where Eu2 = Eu2 = 1, Eu, u = 0 and (u u,) is a vector white
1t 2t > 1t 2¢ 1> "2

noise. Consider the restrictions

(2.21) ELY) ey 12,0 = vy -

where Et is the closed linear space generated by {ult, Ujeogo
cres Ugls Uy g, N These restrictions are not satisfied by

(2.20) since we have

2 3

1 - 5L° + 2L
(2.22) [ (2 - 1L ]+ # 1 21,
Now let

1 - 2L

uft 2 - L 0 Ui
(2.23) = .

u¥* 0 1
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The theoretical spectral density function for u* is given by

- -iw _ iw
1 2e 0 1 2e 0
-lw iw
(2.24) 2~ e 2 - e =1
0 1 0 1
_ ]
verifying that u* is a vector white noise. From (2.20) and
(2.23) we see that
B 7 [ 9 a7
Y1t 1 + 2L - 1L 1 uft
(2.25) =
Yoe 2 - L 0 ugt
n _ - I
= C*(L)ut.
Now
(2.26) det C*(z) = -(2 - z)

which has a zero at z = 2 that is outside the unit circle. Thus

u* is fundamental for y. Restrictions (2.21) imply that
(2.27)  Elyy 10,1 = v,,-

Since
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2
(2.28) [1"“"* =2 -1 and

],
L_j+ ?

C*(L) satisfies restrictions (2.27). This example illustrates

that the converse of Lemma 2 is not true in general. The cross-
equation restrictions hold for the fundamental representation
(2.25) but not for the nonfundamental representation (2.20). In
this example u¥ « ¢ , however, u, ¢ L

We now turn to Lemma 3, which indicates that for a wide
class of cases, the rational expectations restrictions do remain
intact under alternative moving average representations. In such
cases, the rational expectations restrictions fail uniquely to
identify one from the equivalence class of moving average
representations that is obtained by "flipping roots” via Blaschke

factors. This result is of substantial use in interpreting

econometric results.

Lemma 3: Suppose
(i) yt = C(L)ut is a fundamental representation;
(ii) C€(z) is a matrix of rational functions with p(z) as tﬁe
lowest common denominator polynomial of the elements of
C(z);

p1(2)0,(2)
Y(Z)
where pl(z), pz(z), and y(z) are finite order

(iii) det C(z) =

polynomials p,(z) does not have zeroces in common with
? 2



bz(z) and u(z), and Y(z) does not have zeroes in common
with pl(z) and pz(z);
(iv) C(L) satisfies
- 1 ‘

B(L)Cy (L) = [A(L 7)€ (L)],.

Consider any other representation Ve = C*(L)ui, not necessarily

fundamental, that satisfies

(ii') C*(z) 1is a matrix of rational function with p(z) as a

common denominator polynomial of the elements of C*(z);

pl(Z)pg(Z)
y(z)

where pg(z) is a finite order polynomial that does not

(iii') det C*(z) =

have a zero at z = 03

Then C*(L) also satisfies the restrictions in (iv).

This lemma, which is proved in the Appendix A, implies that
in an important class of models, the rational expectations
restrictions do mnot uniquely identify the moving average
representation. Thus, suppose we begin with a fundamental
representation Ye = C(L)ut. We can think of finding a lowest
common denominator for the rational lag operator in each row of

C(L). This will allow us to write
(2.29) C(z) = H(z)J(z)
where H(z) is a diagonal matrix consisting of the reciprocals of

the common denominator of each row on each diagonal and J(z) is a

finite order matrix polynomial. The zeroes of the denominators



of the diagonal elements of H(z) are zeroes of u(z). We know

that

(2.30) det C(z) = det H(z) det J(z)

and thus if 6 is a zero of pz(z), then

(2.31) det J(o) = 0,

We can always find an orthogonal matrix D such that J(9)D has

zeroes In the first column. Let C*(z) be given by

(2.32) C*¥(z) = H(z)J(z)DG(z)
where
l - oz 0
zZ - 0
(2.33) G(z) = .
0 I

Dividing out common factors we can represent J(z)DG(z) as a
finite order matrix polynomial.10 Furthermore, the order of the
polynomial elements of J(z)DG(z) are, in general, the same as
those of J(z)D as long as the polynomial elements in any row of
J(z) have the same order. Associated with C*(L) we can define a

white noise vector u* such that e = C*(L)ut, where
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(2.34) u_ =D ut.

It can be verified that current and past values of u¥* will span a
larger space than current past values of Y Thus u* 1is not

fundamental for y. Calculating the det C*(z), we determine that

(2.35) det C*(z) = det c(z)%i - gg)

py(2)oy(2) (, _ o,
y(z) (1 - az)

p1(2)p35(2)
y(Z)

where

p%(z) = pz(z)i%;::gg%.

Since 0 is a zero of pz(z), we can divide out the common factors
and claim that p%(z) can be expressed as a polynomial. Lemma 3
allows us to assert that the rational expectations restrictions
hold for C*(L) given that they hold for C(L). This is true even
though u* generates a larger information set than u.

Using Lemma 3 and the procedure described above, we can
generate alternative nonfundamental one-sided moving average
representations that satisfy the restriction. This 1is true as

long as pz(z) is not a constant and the polynomial elements in
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any row of J(z) have the same order. Our choice of a particular
zero of pz(z) was arbitrary. Any element in the set of zeroes of
pz(z) could have been employed. Furthermore, this procedure
could have been repeated using different zeroes of pz(z). All of
this indicates that the rational expectations restrictions
cannot, in general; be expected t;‘ pin down a wunique moving
average representation, but rather these restrictionms will, in
general, hold over a multiplicity of such representations. From
the standpoint of estimation, this implies that multiple peaks in
the likelihood function may exist. This 1is true even 1if we
normalize to avoid the relatively trivial identification problem.

On the other hand, these problems in identification are not
necessarily all that damaging. In cases in which the polynomial
orders for elements in given rows of J(z) are assumed to be
different, both the relatively trivial identification problem of
Lemma 1 and the deeper identification problem of Lemma 3 are
often less severe and sometimes nonexistent. In cases in which
pz(z) is8 constant, then Lemma 3 cannot be applied to generate
alternative moving average representations that sasisfy the
restrictions. For example, if the y process is assumed to have a
finite order vector autorgressive representation, the polynomial
pz(z) is constant. Even if there is a multiplicity of moving
average representations, the possibility of testing the rational
expectations restrictions is not destroyed, nor are the chances
of estimating parameters of economic agents' assumed objective
functions in dynamic optimization models ruined. Also, it is

straightforward but sometimes computationally tedious to infer an
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estimate of a fundamental representation from estimates of a
possibly nonfundamental representation.

Lemma 3 provides us with a justification for ignoring the
location of numerator zeroes for rational forms of C(z). The
same cannot be said of denominator zeroes of C(z). If we let
B(z) be the lowest common denominator polynomial of the elements
of C€(z), then the zeroes of u(z) must be constrained to 1lie
outside the wunit circle. The prediction formulas used for
deriving the rational expectations restrictions rely on the
elements of C(L) being one-sided in nonnegative powers of L.
When u(z) has =zeroes iunside the unit circle, this one-sided

constraint is violated.



2b. Estimation

In estimating linear time series models, full scale maximum
likelihood estimation with Gaussian density function 1is
computationally impractical for most applications. This has lead
to the proposal of several alternative procedures which use
approximations to the 1likelihood function that ease the
computational burden. These approximations are constructed so
that the resulting estimators will by asymptotically equivalent
to the maximum likelihood estimator. Hansen and Sargent (1980)
describe a couple of these approximations and discuss how to
impose the rational expectations restrictions for a closely
related class of models.

For the purpose of this paper we follow the suggestion of
Hannan (1970), Robinson (1976), Phadke and Kedem (1978), and Kohn
(1979) and approximate the log likelihood function of a sample
t=1, 2, ..., T} as follows.11 First we define the Fourier

transform of the y sequence as

T -1i t
(2.36) Y(w,) = £ y.e Y3
3 g=1 F

where wj = g%l, j=1, 2, ..., T-1. We omit frequency zero from

consideraton since sample means are subtracted from our time

series. The periodogram is then defined as

(2.37) I(o,) = % Y(o )Y (0 )"

where the prime denotes complex conjugation and transposition.
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Then the log likelihood of the sample {yt : t =1, ..., T} is

approximated by.

T-1

(2.38) L = EI-log21r -1 I log det S(w,)
p T71 -1
-7 I trace S(w,) I(w.)

where S(wj) is the theoretical spectral density defined in (2.2)
and (2.3). Note that S(mj) can be expressed in terms of the free
parameters of C(L) using formula (2.2). To emphasize this, it is

worthwhile substituting (2.2) into (2.38) to obtain

T-1 _ -
(2.39) L = —%llogZH - % I log det [C(e T“j)C(e i"’j)']
j=1
T-1
- % I trace [C(e—iwj)c(e—iwj)']l(mj)
j=1 .

In computing (2.39), it is useful to exploit the fact that

-iw

log det[C(e "®)c(e ™)'} = 1log detfcle (2™ ¥l g 71(2m0) 0,

(2.40)

Toyee 0y 7 rqw)

-1i(21-w)

trace [C(e
= trace {C[e ]C[e—i(zﬂ—m)]'}—II(Zw—w)-

These formulas permit (2.39) to be rewritten in terms of sums
over only T/2 frequencies. The free parameters of C(L) are

estimated by maximizing (2.39) over the free parameters of
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C(L).12 This is a nonlinear maximizaton problem, which can be
solved by any of a variety of algorithms that are described by
Bard (1974). Phadke and Kedem (1978) suggest a modification of
this procedure im situations in which y can be represented as a

finite order vector moving average that will yield exact maximum

likelihood estimates.13
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3. Applications to the Term Structure of Interest Rates

In this section we illustrate our methods with expectations
models of the term structure. The techniques illustrated have
important counterparts in other potential applications of linear
rational expectations models as well. First, we discuss the
joint modeling of interest rates of various maturities with
special focus on situations in which the sampling interval is
finer than the term of the shortest term interest rate. The
implications of this discussion carry over to expectations models
of forward and spot prices when the 1length of the forward
contract exceeds the sampling interval. For the purposes of this
discussion, it turns out to be useful to begin with a continuous
time expectations model of the term structure. Second, we
discuss situations in which first differences of y, are assumed
covariance stationary rather than levels. Although we use this
discussion to obtain a modified term structure model, our
treatment is general enough to apply to model testing whenever
A(L_l) and B(L) are specified a priori. Third, we specify the
precise form of the term structure models which we estimated and
provide some details of how the estimation was carried out.

Fourth, we discuss our empirical results.



-35-

a. Implications of a Continuous Time Model of the Term Structure
Let us consider a version of the expectations model of the

term structure. Let r_ denote an instantaneous interest rate and

t
Rkt denote a k-period interest rate realized at time t. We
assume that
1 k
= J
(3.1) R, . <E[ § rt+sdslnt]

where ﬂt is the information sét of economic agents which possibly
includes the past continuous record of interest rates of various
maturities. Relation (3.1) is assumed to hold for any maturity
of length k. Suppose the econometrician observes p-period and
gq-period interest rates at integer points in time where both P

and q are integers. Relation (3.1) implies that

12 P
- i
(3.2) RPt pE[ 0 rt+sds|¢t]
= lE[R + R + + R le ]
P 1t lt+l e lt+p-1'"¢
and
= 10 sa
(3.3) Rie = qBL 0 Teggdslo]
+ ... + R

lt+q—ll¢t]

1A
= = +
qE[th R1t+1

where @t is the econometrician's information set that includes at
least current and past observations of Rp and Rq at integer

points in time but not necessarily Rl' Let us define
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~

(3.4) R = E[thlé

1t 1.

t

”~

By definition, th is an element of ¢_. An iterated projection

argument can be used to establish

(3.5) R, = %%[Aq(L'l)ﬁltlat]
R = —E[A (L-l)g o ]
pt P 1t ¢t
where
© (3.6) Aq(L'l) = %[1 PO R SR - L T

1 -p+1

-1 1 -
A (L =—[1+L + ...+ 1L .
P ) = I |

One possible way to test the rational expectations term

structure restrictions is to assume that

"~

(3.7) Ry, = Cog(L)u,

where u is a white noise vector that is fundamental for the ¥y
process consisting of variables observed by the econometrician.
Recall that y contains both Rq and Rp. As in Section 1, we

agssume y is covariance stationary and write

(3.9) vy, = | ®




-37-

¢, (L)
c(L) = C, (L)

Gy (L)

where x 18 a vector of other variables observed by the econo-

metrician. Restrictions (3.5) and (3.6) imply that
-1
(3.10) [Aq(L )Co (L)1, = ¢, (L)
-1
[A(L7D)c(@)], = ¢,y(L).

Thg term structure restrictions can be tested by first estimating
the parameters of CO’ Cl’ 02 and C3 subject to the restrictions
(3.10). The maximized value of the likelihood function with
these restrictions imposed should‘be compared to the maximized
value of the 1likelihood function used to estimate the free
parameters of Cl’ C2 and C3 without imposing restrictions (3.10).
In this formulation Elt can be thought of as a "hidden variable"
that is not included in Yeo However, the parameters of C0 remain
estimable.14

An equivalent testing procedure is available when p is an

integer multiple of q, i.e., when p = mq where m is a positive
integer. Term structure model (3.1l) implies that
1

(3.11) R . = E[ACL )thlét]
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where

ac™ly - %[1 + 179+ ...+ (2 hq

This specification is a special case of the general model given

in Section 1. Restrictions (3.11) imply that
(3.12)  [ALT1)E, (L], = Cy(L)

The equivalence of testing restrictions (3.10) and restrictions
(3.12) is established in Appendix B.

In gsituations in which more than two maturities are used in
egstimation, both of the strategies described above can be

generalized in the obvious ways.15
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b. Restrictions Implied for First Differences

In the analysis considered thus far, we have assumed that
the y process is covariance stationary. Although we could view
this assumption as being appropriate for deviations about a
linear time trend, an alternative strategy 1s to assume that the
first difference of Y1 is covariance stationary. We maintain the

model restrictions (l.4) which for convenience are written below:

-1
(3.13) E[A(L Ty, 18,1 = B(L)y,,-
-1 o« -3
Recall that A(L ) = £ a.,L °. Let
3=0
* : £ 0 1
aj kijaj or j s sy sy
(3.14) *

Y1e T Y1e T Y1ie-1e

and
- ® % -
A*(L 1) = 5 a,L j.
j=1
N * * implyi h
= - t t
ow agy 2541 ay imply ng a
-1 -1 16
= Ak * %
(3.15) A(L )ylt A* (L )y1t + a¥yi,-

Substituting (3.15) into (3.12), we obtain

-3
(3.16) E[A*(L )th‘“t] = B(L)yy, ~ af¥y,-
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Suppose that X, is vector of variables not contained in [yit,

(B(L)y2t - agylt)']. Furthermore, suppose that B(L) is specified

a priori. Let

B(L)Yyy, = afyy,

We can write the first difference model as
_1
* * = %
(3.18) E[A*(L )yltlﬂt] boyft

and agsume that y*' = (yf', yg') is covariance stationary. This
is just a special case of the general model presented in Section

1.
The first difference model derived here is usefully compared
to that employed by Sargent (1979%a). In particular, Sargent

first differenced (3.12) to obtain

(3.19)  E(AG Dy le.] - BIAGC Dy, e, ] = B(L)y,,

BCL)Yyppoq-

Sargent projected both sides of (3.19) onto ﬂt to obtain



(3.20)  E[AL D)y le .1 = E[B(L)(L - L)y, le 1.

Although restrictions (3.20) can be tested using procedures
discussed in this paper, some implications of (3.13) are lost by
projecting onto ¢t-1 rather than @t. On the other hand, (3.18)
involves a projection onto Qt rather than ét-l and imposes more
restrictions than (3.20). It is therefore quite possible that
the procedures proposed Iim this section can detect empirical
contradictions of the hypothesis (3.13) that Sargent's procedure

could not.
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c. Implementation

In our empirical example, we used monthly observations of a
three-month interest rate and a five-year interest rate for our y
vector time series. Let p = 60 and q = 3. Four different term
structure models were estimated. The first two are versions of a

model used by Sargent (1979a). Sargent tested the restrictions

e 1

ool
3.19 E[=(R + R + ... + R
( ) [ q,t q,ttq q,t+t(m-1)q t

where ¢ = { ee+} and where m = 20.

t th’ th—l’

LEC I Y

Rpt’ Rpt—l’

One possibility is to assume that deviations from a constant and
linear time trend of (Rq, Rp)' are covariance stationary and that
(3.19) applies to the detrended versions of Rq and Rp. We refer
to this as Model I. A second alternative is assumed that the
first differences in Rq are covariance stationary and that (3.19)
applies to the levels. Following the strategy described 1in

Section 3b, we know that

«ss AR )

+ AR q,t+q

S, ,m—1
(3.20) E[(_E_)(ARq

, tt+1 q,t+2

.o-+AR )+o-o

-2
4+ (D
( m ) (AR q,t+2q

+
q,ttqtl ARq, t+q+2

+ 4+ A + ...

1
@) ARy er(m-2)q+1 ¥ 2Ry, e+ (m-2)q+2

AR pr(m-1)g) %)

= R - R
P>t q,t
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where AR = R - R . We can assume that (AR R - R

q,t q,t q,t-1 ( q’ p q)
is covariance stationary and that restrictions (3.20) apply to
this differenced time series. We refer to this as Model II.

Shiller (1979a) has used an expectations term structure

model of the form

1= m—1
(3.21) E[——ll_ym(R + YR e TR k(mm1y g0 0]

p,t

Following Shiller we set v = .98, Again we have two strategies
available. One is to assume the (3.21) applies to deviations
about a linear time trend and that these deviations are jointly
covariance stationary. We refer to this as Model III. The
second strategy is assume that the first difference in Rq is

covariance stationary. The first difference model takes the form

2 4+ Ym_l)(AR

(3.22) B[00y + v q,t41 T AR pgp T oee

-y

AR ) + (1— 1

q, ttq

Y 2 m-—
1_Ym)(Y + ... + Y )(ARq,t+q+1

+ AR

1-vy m—-1
q, t+q+2 oot (Y

1-v

QO.+
ARq,t+2q)

(AR + A + ...

q,t+(m-2)q+l Rq,t+(m—2)q+2

ARq,t+(m-1)q)|q’t]
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We can assume that (ARq, Rp - Rq) is covariance stationary and
that restrictions (3.22) apply to this differenced time series.
We refer to this as Model IV. Before we examine these results we
need to consider a few more details about estimation.

All four models are special cases of the model discussed in
Sections 1 and 2. To estimate and test these models, we need to
impose finite parameterizations on the lag polynomial C(L) that
also satisfy the restrictions. We parameterize the elements of
C(L) as rational polynomials so that the y process is assumed to
be a mixed autoregressive moving average model. Interest rate
data from the U.S. are known to have what Granger (1966) has
dubbed as "the typical spectral shape.” That 1is, they are
characterized by a covariogram which damps very slowly. The
first differencing and autoregressive parameters can accomodate

18

this feature of the time series.

For each of the models we assume that

r al(L) az(L)
Rqe 8 (L) 8 (L) s
(3.23) =
n; (L) ny (L)
R u

where
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n
B(L) =1 + BlL + ... + Bn L0

0

L+ ... + a L1

+ a jnl

(3.24) a,(L) = a

J 0 ji

n
nj(L) = njO + nle'+ cee + njnzL 2

j=1, 2. We impose the normalization that o = 0.

It turns out that the term structure Models I-IV impose
restrictions on the a's and n's. In particular, if the a's are
known, the n's can be calculated fromvthe regstrictions. In our
application we computed the n's recursively. For all four models

A(L_l) is a finite order polynomial in the lead operator L—l.

That is

-1 -k
(3.25) A(L ) = AO + AlL + ... + AkL .
Now

-1 a (L) n (L)

(3.26) [ACL )B(L) ]+ E%f7~
or

-1 aj(L) _ -1 - ﬂj(L)
(3-27) AL )B(L) "’j“‘ ) B (L)

- -1 -2 -
where wj(L 1) = wle + wsz + ... + wjkL k.

Thus
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(3.28) A(L—l)aj(L) - ‘JJj(L_l)B(L) = ().

For all of our applications, k was larger than n0+1 and

Performing the multiplication and solving for the

recursively, we obtain

Vi T A% 40

(3.29) wjk—l = Ak-lajO + Akajl - wjksl

Vg1 T Aoy FhAgayp Foell F An,+1% 0,

(Vo817 + V438, + o0n ¥ wjn0+18n0)'

Using the ¢'s we calculated the n's as follows

+ ... + A o
ny Jny

(3.30) nj1 = Aoajl + A1“j2 + ... + Anl‘lajnl
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n = A a .
im0 dmy

Formulas (3.30) assume that n, > ng.

Using formulas (3.29) and (3.30) and a hypothetical choice
of @15 O and B it is straightforward to evaluate the frequency
domain approximation to the log 1l1likelihood function~ given in
Section 2b. Estimates of the parameters of a1, @y and B8 for the
four models were obtained by maximizing this approximate log
likelihood function. The asymptotic covariance matrix of the
parameter estimator is estimated by minus the inverse of the
Hessian of the log likelihood function evaluated at the estimated
parameter values. Unrestricted models were estimated by freeing
the parameters of ny and ny and maximizing the corresponding
frequency domain approximation to log likelihood function. The
restrictions were tested by comparing the maximum values of the

restricted and its associated unrestricted log 1likelihood

functions.
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d. Empirical Results

To illustrate the methods discussed in this paper, we have
estimated versions of Models I-IV using monthly U.S. data. In
egstimating Models I and III, we used observations from January
1959 through June 1971. In estimating Models II and IV, we used
observations from March 1959 through June 1971. We estimated
bivariate models using the five—year government bond rate and the
three-month treasury bill rate. The data are point—in-time,
first of month observations.19 In estimating Models I and III,
the yields were each regressed on a constant and linear trend.
The residuals from these regressions were then taken as the data
ugsed to estimate the parameters.

Tables 1-3 report estimates for Models I-IV. These tables
also contain estimates from unrestricted parameterizations within
which the expectations term structure models are nested. The n
parameters reported in these tables were calculated using the «
parameters and the 8 parameters in the restricted parameteriza-
tions but were not constrained in the the unrestricted runs. In
the tables Lr denotes the maximum value of the log likelihood
attained under the restrictions, while Lu denotes the maximum
value attained under the unrestricted parameterization. The
tables also report marginal confidence 1levels which are the
probabilities under the null hypothesis that a chi squarelrandom
variable with degrees of freedom equal to the number of
restrictions would be less than or equal to the reported value of

20
2(Lr Lu).
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In Table 1 we report the results for Models I and III using
detrended data. The lag polynomials al(L) and az(L) are both
second order and B(L) is first order. The likelihood ratio test
statistics indicate strong rejection of both models. However,
the estimated autoregressive parameter 8y is -1 for both Models I
and III and the unrestricted model. The quality of frequency
domain approximation to the }ikelihood functions deteriorates
when autoregressive or moving average roots get close to the unit
circle. For this reason the test statistics and estimated
parameters should be examined with some skepticism. This
suggests that the first difference results may be of more
interest.

Table 2 reports results for Models II and IV using first
differenced data. Again the lag polynomials al(L) and az(L) are
both second order and B(L) is first order. The likelihood ratio
test statistics indicate strong rejection of both models but not
as strong as in Table 1. Table 3 reports results for Models II
and IV with richer specifications of the lag polynomials al(L),
az(L) and g(L). Both al(L) and “2(L) are third order while g(L)
is 8second order. Again the likelihood ratio test statistics
provide strong evidence against the expectations term structure
restrictions.

Overall, the results yield considerable stronger evidence
agalinsgt the expectations term structure hypothesis than was
reported earlier by Sargent (1979a). One plausible explanation
for this difference 1lies in the fact mentioned in a previous

subsection that Sargent's procedure tests fewer restrictions
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implied by models.21 The results in this paper are comnsistent
with findings of Shiller (1979a) and Singleton (1980a) who
examined these models using variance bounds tets.

As 1is evident from the lemmas of Section 2, we are not
assured that the resulting estimated implicit moving average
representations are fundamental. In checking this we verified
that all of the moving representations are fundamental with the
exception of the wunconstrained run in Table 3. We are
guaranteed, however, of an observationally equivalent fundamental
representation which yields the same maximized value of the
likelihood function. Therefore, the values of the likelihood
ratio test statistics in Table 3 are not affected by the fact
that the implied unrestricted moving average representation is

not fundamental.

Beyond the conclusions from the test statistics, the main
value of results such as those portrayed im Tables 1-3 1is to
provide statistical representations of the joint process
estimated subject to the cross—equation restrictions. Such
representations are valuable for at least two reasons. First, in
rational expectations models that are more general than, but
resemble the current models, estimating such representations is
often an essential step in the process of overcoming Lucas's
critique of econometric policy evaluation procedures (see Hansen
and Sargent (1980)). Second, as Sims (1980) and Litterman (1979)
have argued, for purposes of so-called unconditional forecasting,
it may be wise to use a vector moving average constrained by even

a false null hypothesis that economizes on the number of
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parameters to be estimated. In this sense, the model-constrained
results such as those presented in Tables 1-3 could be useful for
forecasting even 1if one respects the evidence which our
procedures have turned up against the term structure

restrictions.



4., A Comparison of Variance Bounds to Tests of Constraints on
the Moving Average Coefficients
An altermnative procedure exists for testing the rational
expectations restrictions in situations in which A(L-l) and B(L)
are specified a priori. Leroy and Porter (1979), Shiller (1979a)
énd Singleton (1980a) have proposed variance bounds tests. These

tests rest on the obgervation that the restrictions
E[A(L D)y, la ] = B(L)y
1t "t 2t
imply that

4.1y E(aG Hy, 1@ Dy, 10

v

E{ [B(L)th] [B(L)th] '}

BCCEIACL Dy, 1Y THEA Dy, ¥, 137

v

where Yt = ﬂt. Alternative choices of Yt give rise to different
lower bounds on the variance of B(L)th'

The constraints which we placed on the moving average
tepresentation of y embody the variance bounds restrictions in
(4.1) for a whole family of possible choices of Wt. Recall that

we imposed the restrictions

(4.2) B(L)C,(L) = [A(LT1)c (1)1,
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Now
(4.3)  ECIAGL Dy, 10A@Thy, 1)
= = 1T ace!re eI acetre (7)) aw

_l g T iw —iw

> o= 1T ace™ye (71, 1ace ™) e, (7)1 Jdw

M T I P Y IO T Ot SRR

= EC[B(L)Y,, 1[B(L)y, 1'}.

Thus, the upper bound given im (4.1) is satisfied. For the lower
bound we begin by choosing Vt = @t. Since B(L)y2t £ ¢t, we can

claim that

(4.4)  E(AGL D)y la,l = E[aT Dy, e 1 = B(Ly,,
and that
(4.5)  E{[B(L)y, 11B(L)y, 1"}

= E((E[ACL™ )y, l¥ THEIAL )y, ¥ 13"},

Thus the lower bound given in (4.2) is satisfied for Yt = @t. it
follows immediately that the rational expectations restrictilions

also imply that the lower variance bound holds for any subset

¥y <9 .
t t
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This shows that in a population sense the variance bounds
restrictions (4.1) are implied by the restrictions (4.2) that we
have imposed on coefficients of the moving average representa-
tion. The converse, however, is not, in general, true. That is,
it may be possible to satisfy the variance bounds regstrictions
without necessarily satisfying the restrictions on the moving
average coefficients. Thus, tests of the restrictions on the
moving average coefficients embody a richep set Implications of
rational expectations than variance bounds tests. Geweke (1979)
has made essentially the same point in the context of a
regression formulation of the restrictions. The testing
procedures which we advocate differ from those suggested by
Geweke (1979) in that we do not conduct our tests as a linear
restriction on a regression equation. On the other hand,
asymptotically efficient estimation of the regression parameters
in Geweke's formulation can be accomplished in a manner very

similar to what we have proposed in this paper.
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5., Inexact Models With Hidden Variable Interpretations of
Disturbances
So far, this paper has been confined to analyzing exact
linear rational expectations modéls. In this section, we briefly
indicate which aspects of the analysis readily carry over to more
general linear rational expectations models, and which aspects
require modification. It turns out that the method of
represgsenting the cross—equation restrictions and estimating the
parameters both carry over with minimal modification. However,
the treatment of identification must be modified substantially.
We carry out the discussion in the context of the following
modified versionmn of the labor demand schedule described in

Section 1:

a1

-~ Apr 3
?E[ z (xy) Yerit e

j=0

(5.1) n, = An

Ap[ 3 3
+ 6E[jio(xy) at+j'9t]

where 0 < A <1, 0 < y <1, 8§ > O, n, is the stock of employment,

L the real wage, and a, a shock to productivity.

We assume that while current and lagged a's are in the
information set of private agents at time t, they are not
included in the data available to the econometrician. As in
Sargent (1978b) and Hansen and Sargent (1980), this provides an

interpretation of an error term in the relation to be estimated

by the econometrician. Let
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Vit
(5.2) Y, =
Y2¢
where
T "]
at nt
(5'3) Y1t= Y2t=
X
t t
| | ]

where x has ¥ rows and contains the variables that help predict

W, - Further, let

AT = 2 - aTHTE
(5.4) ALY = a@h , - A aTh]
B(L) = [(1 - L) , 0]

Then assumption (5.1) can be rewritten
-1
(5.5) E[ACL Dy, le. 1 =3B (L)y,, .
The methods of Sections 1 and 2 can readily be used to

represent this model in moving average form and to estimate its

free parameters once we make some additional assumptions about
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the relationship between economic agents' information set nt and
the information set Qt = {yt, Yoo eeels The first set of

agssumptions we consider are

(5.6) Ely,pq 10,0 = Ely 4 10,1
and that
(5.7) {ylt, Yig-10 * > Xps X g ese} = ¢t.

Assumption (5.6) says the expectation of Ypr1 conditioned on a,
coincides with the linear least squares projection of Y+l onto
the reduced information set @t. Agssumption (5.7) says that if we
were to observe all of y including a, there would be a redundancy
in the information set @t. This is consistent with the notion
that if an econometrician were to observe disturbance terms there
would be an exact relationship among variables observed by the
econometrician. In the models considered‘in the previous
section, stochastic singularities of this nature were ruled out
because of an implicit omitted information interpretation of
disturbance terms. Thus in the absence of assumption (5.6),
asgumption (5.7) would seem to be hard to defend.

With these assumptions we know that the fundamental

repregentation for y can be written
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2y Cqq (L) C12(1) U1t
(5.8) LA = C21(L) C22(L) u, .
YZt—J C31(L) CBZ(L)
. o —
where le has one column and Cj2 has r columns for j = 1, 2, 3

and uy is a one-dimensional subvector and u, is an r dimensional
subvector of the vector white noise u. Consistent with
assumption (5.7) the dimension of u is one 1less than the
dimension of y. The assumption that u is fundamental for y
carries with it the implication that at least one of the r+1

dimensional minors of

B 1
(5.9) c(z) = | CZI(Z) sz(z)
C31(2) - C35(2)
do not have 2zeroes inside the unit circle. To have hope of

identifying all of the parameters inm C(L), A, &, and Y, we have
to make an additional assumption about how a interacts with the
remaining y vector. We assume that

= Efa

(5.10) E[a

e+1l2es ag_p» ---l e+1 2]

that 1is, we assgsume that no other variables in Qt Granger—cause a.

Asgumption (5.10) allows us to set
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(5.11) Cio(L) =0

and claim that the one-step-ahead forecast error in forecasting
at+1 is a 8scalar multiple of Uyt Regstrictions (5.11) and

(5.6) imply that

1 1

(5.12)  [A)(L 7 (L)I, + [A;(L77)Cy (L)1, = B(L)C,4, (L)

-1
[-AI(L )sz(L)]+ = B(L)CZZ(L).

The identification questions addressed by Lemma 1 and Lemma 2
become more complicated in this environment because of the
assumption that ClZ(L) = 0 and that u is r+l dimensional while y
is r+2 dimensional. From a practical standpoint both of these
complications result in making the possibility of multiple peaks
in the likelihood function much less likely.

Since a is not observable, the moving average representation
for the process observable to the econometrician is obtained by

removing the first row from (5.8) and writing

w = C,. (L) C,, (L) u
(5.13) 21 22 1t
Y2t C3; (L) C3, (L) Uy

= C*(L)ut.

Although u is assumed to be fundamental for ¥, u 1is not in
general fundamental for (w, yz’)'. That is the restrictions hold

for a moving average representation that is not necessarily



fundamental for the process observed by the econometrician.
There 1is no guarantee that these restrictions will also hold
across a moving average representation that is fundamental for
(w, y2')'.23 In this sense, Lemma 2 does not carry over to these
inexact models. A related point i1is that restriction (5.12)
involves Cll' This indicates that the serial correlation
parameters of a an be 1identified and estimated without
observations on a.

We now consider relaxing assumptions (5.6) and (5.7). As
noted above, in the absence of assumption (5.6), assumption (5.7)
seems hard to defend. That is, 1if the relevant information set
of economic agents is larger than Qt then it seems hard to defend
the idea that there is an exact relationship among the variable
in vy. Indeed it seems 1likely that the omitted information
variables would remove the stochastic singularity. Although, an

iterated projection argument implies that
(5.14)  E(at Ly, e 1 = E[aL™ D)y, l2.] = B(L)y
. Yie! % Viet¥e 2t

the fact that the fundamental noise vector u is allowed to be r+2
dimensional substantially hinders prospects for identification.
This 1is true even 1if assumption (5.11) holds. To hope to
identify and estimate the parameter of C and A, y and 6§, it 1is
necessary to make gome additional assumptions once (5.7) and
(5.8) are relaxed. These questions are investigated in Hansen

and Sargent (1980, 1981b).



One should not be too discouraged by the comments made
above. Anytime wunobserved components are introduced into time
series econometric models, some assumptions have to be made about
the dynamic interaction of these unobserved components with
variables observed by the econometrician In order to achieve
identification. The discussion above 1s meant to help
characterize the type of assumptions which will yield
identification of structural parameters and permit reasonable

interpretations of disturbance terms.



-62-

6. Conclusions

As is indicated by the range of examples given in Section

1 the procedures described in this paper are applicable to a

s
variety of linear rational expectations models. Therefore, the
characterization of identification in exact rational expectations
models, the frequency domain estimation methods, and the
relationship depicted between the variance bounds and restricted
moving average representations are useful tools for guiding a
variety of empirical applications. While this paper has focused
on exact linear rational expectations models, the procedures
described here <can be employed with minor modifications in

studying some exact nonlinear rational expectations models when

the underlying observed variables are assumed to be lognormally

distributed.24 This latter point is a topic of future research.
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Appendix A

Proof of Lemma 1l:

The proof of this lemma is an immediate consequence of the

fact that
(A1) (AL (L1, D' o= (AT e (LD,
for any (n x n) matrix D.

Proof of Lemma 2:

Assuming that C(L) satisfies (2.7), we know that
-1
(A2) E[A(L Dy, lz.1 = By,

where zt is the linear space generated by current and past u's.

Using the fact that Zi < £, it follows that

(A3) E[A(L—l)y1t|3t] = Q{E[A(L—l)yltlzt]l2§}
= E[B(L)y,,|5%]
= g(L)th,

since B(L)y2t € Zi. Thus, C*(L) satisfies (2.7).
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Proof of Lemma 3:

Let C*(L) be the operator associated with some other not
necessarily fundamental representation of vy. Furthermore,
suppose that a common denominator polynomial for the elements of

C*(z) is u(z) and that

ol(Z)pg(Z)

(A4) det C*(z) = 7C2)

where pz(z) is a finite order polynomial. By assumption Y. =
C(L)ut = C*(L)ut where u* 18 the white noise vector associated
with C*(L). This implies that

(A5) c(z)c(z 1y = ex(zycr(z" Ly

except possibly at some isolated singularities where the notation

“'" denotes transpose. It follows that
(46) (2)0,(z 1) = p¥(2)p%(z" 1)
P2 %70y 2 2

with the exception of =z = 0, If ¢ 1is zero of pg(z), by

assumption 6 ¥ O and it must be the case that either 8 or 1/ is

a zero of pz(z). Since

pl(Z)DZ(Z)

(A7) det C(z) = ~C2)

and C(L) 4is an operator associated with a fundamental

representation of y, we claim that the zeroes of p,(z) are not
P 2
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inside the unit circle. By assumption the zeroes of pz(z) are
not zeroes of bz(z) and y(z). Also the zeroes of bz(z) and y(z)
are assumed to be outside the unit circle. Together all of these
facts imply that if o is a zero of pg(z), then neither 6 nor 1l/9

are zeroes of bz(z) or vy(z). Let p%(z) be given by
(A8) - p’z*(z) - eo(z - el) eee (2 - ep).

In general, we are not able to impose any restrictions on the

magnitude of Bys ooes ep. We consider some special cases.

Case (1): Suppose lejl > 1 for =1, «.¢, p. This implies that
u* is fundamental for y. Using Lemma 1 we are guaranteed that

the restrictions are satisfied for C*(L).

Cagse (11): Suppose that there exists exactly one ej, namely 0>

such that Iell < 1. Since e1 igs a zero of pg(z), it follows that

(A9) det c*(el) = 0.

Thus there exists an orthogonal matrix U such that all of the
elements in the first column of C*(el)U are zeroes. This allows
us to assert that the first column of rationmal functions of
C*(z)U all have zeroes at 8,- Let us premultiply C*¥(z)U by the

diagonal Blaschke matrix G(z) where
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(A10) G(z) =

to obtain C(z) = C*(z)UG(z). Now

_ ~ pl(z)eo(l - elz)(e2 - Z) ... (68 - 2)
(All) det C(z) = ) P .

The rational matrix C(z) is not singular at 61 but instead 1is

singular at l—. It is8 easily verified that
1

(A12) C(z)C(z ) = cx(z)cx(z Yy

for all |z| = 1. We conclude that C(L) is an appropriate opera-

tor for a fundamental moving average representation of y. All

of the elements 1in the first column of E(%~) are zero since %—
1 1

is not a zero of v(z).

Employing Lemma 1 we know that the restrictions are
satisfied for E(L). The question is whether we can use this
information to ascertain that the restrictions are satisfied for

c*(L). It suffices for us to show that the restrictions are

satisfied for C*(L)U, and thus without loss of generality we
-1

assume that U = I. Recall that we can represent A(z ~) and B(z)

as



_ A, (z)
O W o)

(Al13)
- By (z)
B(z 1) = ELTET
2

where Al(z) and Bl(z) are finite order matrix polynomials, Az(z)
is a scalar polynomial with zeroes inside the unit circle and
Bz(z) is scalar polynomial with zeroes outside the unit circle.
It is assumed that the maximum order of polynomial elements of
Al(z) does not exceed the order of Az(z).

Uging notation that is somewhat inconsistent with the text,
let El(z) denote the vector rational function obtained from the

- - 1 -—
first column of C(z). Note that Cl(;—) = 0, We partition Cl(z)

in the same manner that y is partitioned to obtain

Cyq(2)
(Al4) El(z) = .

621(z)

_ |

Employing our knowledge that the restrictions are satisfied for

E(Z), we can write

_ (z = 0;) _ (z - 0,)
(A15) B(z)CZl(Z) ?T_:_EIET = [A(Z)Cll(z)]+ ?T‘:—EIET .

Also note that
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- (z - el)
€11(2) T = 0,2) Cf,(2)
(A16)
- (z - 61) *
Ci2(2) 7= e,2) CIa(2)
where
C¥. (2)
(A17) 11 = ci(z)
Cfa(2)

and Cf(z) is a vector rational function formed from the first

column of C*(z). Thus the restrictions hold for C* if

A;(z) (z - 6,) A (z)_ (z - 0,)
(Al18) K;(;ycll(Z) ?T_:_FIET - K;szcll(Z)TT-:‘gzgy
+ +

i.e., 1f it is permissible to bring the Blaschke factor inside
the annihilation operator. We proceed to verify that (Al8) is

satisfied. Using a lemma from Hansen and Sargent (1980), we know

that
A (z) A (z)
1 - - 1 - _ M(z)
(419) Az(z)cll(z) Az(z)cll(z) Az(z)
+

Here M(z) is a polynomial vector or order one less than Az(z).

Now 61(%—) = 0. Thus
1
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(A20)

- 1
Ch;(=—) = 0.
By () oh 01

These equalities make use of the fact that AZ(%—) and BZ(%—) are
1 1

not zero. Since the restrictions are satisfied, it follows that

(A21) M(-—) = 0.

Thus, both M(z) and Ell(z) have factors of the form (1 - elz).

Multiplying both sides of (A2) by the Blaschke factor

1
(A22) 1 - 6,2
we obtain
A, (2) (z - 8,) A, (z)
1 - 1 1 - M*(z)
(a23) L ‘1 | T T Lo ‘ul® C Loy

4

Note that M*(z) is a polynomial vector of order less than that of

*
Az(z). Thus %—%%% has a Laurent series expansion about zero in
2
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a region containing the unit circle that is one-sided in strictly

negative powers of z. Furthermore, we are guaranteed that

A (z)
1 M*(z)
(A24) K;TETCfl(Z) AZ( )

is analytic for |z| < 1. We conclude that

A, (2) . A, (z)  _ (z - 85)
+ |+

This verifies that (Al18) holds and that the restrictions are

gsatigsfied for Cfl(L).

Case (4iii): Suppose that more than one of the ej's are bigger

than ome in modulus. For this case we can repeat the argument

provided under case (1ii) an appropriate number of times.



Appendix B
In this appendix we verify the equivalence of the two
testing procedures when p = mq proposed in Section 3a. First of

all, suppose that

(B1) th = (1/q)E[R1t + thﬂ + ... + th+q_1|<pt]
and
(B2) Rpt = (1/p)E[R1t Ry Foeee T R1t+p-1|°t]'

Grouping terms in (B2), we have

~N N ~ N

(B3) Rpt = (L/P)E[R;, + Ry .y + .00 ¥ R1t+q—1'0t]

~ ~

+ (1/p)E[R + R + ... + R

lt+gq lt+g+l 1t+2q—ll¢t]

~ AN ~

T T (U/PEIR) y(m-1)q O Re, et (m-1)qFl

”~

+ Rl,t+mq-ll°t]'

Substituting from (Bl) and wusing an iterated projections

argument, we obtain
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(B4) Rpt = (1/m)Rqt + (1/m)E[th+q|¢t] + ...

o 1

+ (l/m)E[Rq,t+(m—1)q .

= + ves +
(1/m)E[th th+q + Rq,t+(m-1)ql¢t]

~ -1
= E[A(L )thIQt].

This establishes that (3.5) implies (3.11).

In establishing the converse, we 1Impose some extra

restrictions. Let

. —_ - —
qt Cl(L)

(B5) vat = CZ(L) u,
X, C3(L)

be a time invariant fundamental representation. We assume that
Cl(z) is analytiec in |z] < R where R > 1 except possibly at a
finite number of points denoted Hys Mgs +-+, Up, Where lujl =1,
We assume that PN # Yj where Yj = eZwij/q for any choice of j =
1, 2, ... q-1 and any choice of k = 1, 2, ..., K. Furthermore,
we assume that Cl(z) has finite order poles at His Hogs soey Hpe
We allow Cl(z) to have poles on the unit circle in order that we
can analyze some borderline nonstationary stochastic processes
along with covariance stationary processes. When Cl(z) has poles

on the wunit circle, we adopt the interpretation that the y

process starts up at some time 1 and set u =0 for t < 1.
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We assume that the restrictions

-1
(86) [A(LTT)C (L), = C,(L)
hold where
(B7) A(L—l) = (1/m)[1l + L—q + ...+ L—(m-l)q].
Let
-1 1 - z—q Zq - 1
(BS) A (Z ) = — = —
1 1 - g7t z 1(z - 1)
and
"]. 1 - z.—p Zp - l
(89) Az - AN 1 .
P 1 -z 1 ZP 1(z - 1)

The vector function

¢y (z)(z - 1207
(B10) F(z) =

zq—l

is analytic in region |z] < R except at His Mgs *==s Hgs Y5 Yoo

. ey Yq—l and has a removable singularity at z = 1. Let

(B11) Co(z) = F(z) - I

where
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(B12) P, = 1im F(z)(z - ).

Y
17, 3
We wish to verify that CO(L) satisfies

1

(B13) [Co(LIA (L77)1, = € (L),

To do this, first we establish that

A (L'1)1>
(B14) —4— 37 = o.
L Yj +
Note that
A (z e (z% - 1)p
(B15) 9 J = — J_
=27 7; z4 (z-1)(z=v )
= _...1_.._. q—Z
zq‘l(gjo + gjlz + ... + gjq_zz ).
From here, result (Bl4) follows immediately. Second,
egtablish that
-1
(B16) [F(L)Aq(L )1, Cl(L)-

This follows from the definition of F(z) since

(BL7) F(z)Aq(z—l) = ¢, (2).

we
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Taken together, (Bl4) and (B16) imply restrictions (B13).
We are finished establishing the converse once we show that

1

(B17) [CO(L)AP(L- = C,(L)

)4
given that (B6) holds. Now

(B18) F(z)AP(z—l) = ¢, (z)a(z 1),

Therefore,

1 1

[F(LIA_(L77)1, = [€ (LA™ )1, = C,y(L).

It remains for us to show that

P
1 =
(B19) [L—Q—;jAch )1,= 0.
However,
P -1 P.(zP - 1)
(BZO) TLA (Z ) = _lj
ZZvy P zP (2=1)(z-v )
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-1
P.A (z *)
(B21) ip 1 p-Z)

+ h + ... + h
p-T(hj0 T hyy2 jp-2°

Z"Yj

from which it follows that (B1l9) is true. Thus with some extra
assumptions (3.11) implies (3.5).

It is worthwhilé to note that our choice of C0 was not the
only possible one. We chose C0 so that Co(z) does not have poles
at Yy, Yo, e, Yq—l' In cases in which it is assumed that Cl(z)
does not have poles in |z| < R, this choice of Co(z) will also

not have poles in |[z|] < R and will be the only choice of Co(z)

that does not have poles in |z] < R.
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Notes
For some of the discussion presented in this paper, this
assumption could clearly be relaxed. We make it in order to
insure the existence of various time invariant
representations.
A useful reference for the 1linear least squares predic-
tion tools we are employing is Rozanov (1967).
Wold's Decomposition Theorem does not guarantee the exis-
tence of a representation where u and y have the same
dimension. However, we are making this extra agssumption for
the sake of convenience. Many of our results could be
extended to cover cases in which u has smaller dimension
than y but at the cost of making our discussion more
tedious.
The Wiener-Kolmogorov brediction formulas are discussed
by Whittle (1963). Sargent (1979b, p. 292-3) mentioned the
idea of using these formulas to get a compact representation
of the cross—~equation restrictions implied by the linear
rational expectations model of the term structure.
Whittle (1963) discusses this operator. Hansen and Sargent
(1980) use the operator in contexts related to those in this
paper.
For example, see Samuelson (1965).
For some additional examples, see Sargent (1979b, Chapters
12, 13, 14 and 16).
Blaschke factors are described by Saks and Zygmund (1971, p.

221)], and used in a somewhat related context by Hansen and

Sargent (1980).
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See Shiller (1972) and Sargent (1979b, Chapter 10) for expo-
sitions of the law of iterated projections.

Dividing out common factors amounts to modifying the value
of a meromorpﬁic function at removable singularities. As
long as these singularities are not on the unit circle, this
modification has no impact on the Laurent series expansion
of the function in a region containing the unit circle.
These authors also propose procedures that involve concen-—
trating the likelihood function to conserve on the number of
parameters being estimated iteratively. Because of the form
of 'the rational expectations restrictions, we do not
concentrate the likelihood function. In order to justify
using maximum likelihood with a Gaussian density function,
we have to strengthen our assumptions about the Y process.
For 1instance, an assumption that y 1is a general linear
process is sufficient for this justification.

A potential advantage of the frequency domain approximation
is that it accomodates the idea of fitting time series
models at subsets of frequencies that a particular economic
theory is designed to explain. This point has been noted by
Robinson (1977). Sims (1974), in proposing closely related
procedures, sgsuggests that seasonal frequencies should be
ignored in fitting time series models. Hodrick and Prescott
(1980) suggest that low frequency movements of economic time
series should be ignored in business cycle modeling. A
natural question that surfaces, however, is the extent to

which dynamic economic theory can explain successfully
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movements at some subset of frequencies without considering
the "spilling over" impact onto other frequencies. This is
especially a concern when the economic theory relies on
aésumptions that economic agents forecast optimally.
Without an answer to this question, we are reluctant to
recommend that researchers ignore sone frequencies when
using frequency domain procedures to estimate rational
expectations models.

Phadke and Kedem (1978) also provide some examples that
indicate that there may be substantial gains in terms of
small sample proportions to using an exact likelihood
approach when there are roots close to the unit circle.

From the standpoint of the discussion in this subsection,
the covariance stationarity assumption can be relaxed.
Instead we could allow elements of C(z) poles on the unit
circle and assume u, = 0 for t { t for some start—up time t.
If a differenced version of y is assumed to be covariance
statlionary, at least asymptotically, elements of C(z) may
indeed have poles at z = 1. Identification of the
parameters of C0 is a little more delicate if elements of
C(z) have poles on the unit circle and if P = mq for some
positive integer m. See Appendix B.

Shiller (1980) and Sargent (1976, fn. 13, p- 220) have noted
that i1f data on interest rates at a sufficient number of
maturities are available, then the 1linear rational

expectations model of the term structure implies a set of

linear restrictions on the vector autoregression of a vector
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of rates, (Rl’ Rz, . e ey Rp). Shiller (1980) has correctly
attributed the more complicated, highly nonlinear nature of
the restrictions on the vector autoregressions fit in
Sargent (1979a) and in the present paper as reflecting
"omitted variables” from the list of maturities included in
the vector autoregression. However, the iterated
projections argument of Shiller (1972) that was cited by
Sargent (1979a) implies that omitting those variables leads
to no model misspecification, nor does it affect the
validity of the econometric tests employed. Furthermore, in
many contexts 1t will simply be impossible to possess
observations of sufficiently many maturities to permit the
cross—equation restrictions to assume a linear form.

The rearranging of terms in the infinite sum in order to
obtain (3.15) 1is justified given our assumptions about
A(z—l) and y.

Singleton (1980b) has derived a special case of these res-—
trictions to use for variance bounds tests.

Strictly speaking, the first differencing is used to remove
a simple type of nonstationarity. The covariogram of the
original process may not be well defined.

The data were obtained from the Saloman Brothers publica-

tion, An Analytical Record of Yields and Yield Spreads.

These data are first of month observations.
The log likelihood functions were maximized using the POWELL
and GRADX subroutines of the Goldfeld-Quandt nonlinear

estimation package. In cases in which convergence was
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achieved using GRADX, numerical second derivatives were used
to obtain estimates of the asymptotiec standard errors.
These standard error estimates are reported in Tables 1 and
2 in parentheses below the coefficient estimates.

Also, Sargent (1979a) wused quarterly rather than monthly
data. On the other hand, Sargent's sample started at an
earlier date than ours.

In situations in which A(L—l) contains lead terms with
powers greater than one, the regression equatioans which
Geweke (1979) discusses have disturbances that are serially
correlated and regressors that are not exogenous. While
ordinary least squares remains consistent and is
computationally convenient, it 1is not an asymptotically
efficient way to estimate the regression parameters. These
points are discussed in more detail in Hansen and Hodrick
(1980).

This is an extension of a discussion in Hansen and Sargent
(1980). In that paper it 4is assumed that a does not
Granger—cause X.

See Hansen and Singleton (1981) for a preliminary discussion

of this.
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