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ABSTRACT

We analyze the effects of money injections on interest rates and exchange rates when agents

must pay a Baumol-Tobin style fixed cost to exchange bonds and money. Asset markets are

endogenously segmented because this fixed cost leads agents to trade bonds and money infre-

quently. When the government injects money through an open market operation, only those

agents that are currently trading absorb these injections. Through their impact on these agents’

consumption, these money injections affect real interest rates and real exchange rates. The model

generates the observed negative relation between expected inflation and real interest rates as well

as persistent liquidity effects in interest rates and volatile and persistent exchange rates.
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Several features of the observed relationships between money and both interest rates and exchange

rates are difficult to account for in standard monetary models. Motivated by the work of Baumol

(1952) and Tobin (1956), economists have argued that adding frictions which lead to a segmented

market for trading money and interest-bearing assets might help improve these models. (See

Grossman and Weiss 1983, Rotemberg 1984, 1985, and Lucas 1990, among others.) Here we build

on this literature by developing a model with endogenously segmented asset markets. Our model

is both simple and promising as a way to account for the data.

In our model, agents must pay a fixed cost to transfer money between the asset market

and the goods market. This fixed cost leads agents to trade bonds and money only infrequently.

In any given period, only a fraction of agents are actively trading; that is, the asset market is

segmented. When the government injects money through an open market operation, then, only

the currently active agents are on the other side of the transaction, and only their marginal utilities

determine interest rates and exchange rates. Money injections are absorbed exclusively by these

active agents: the injections increase active agents’ current consumption; hence, real interest rates

fall and the real exchange rate depreciates. We refer to this effect of money injections on real

interest rates and real exchange rates as the segmentation effect.

Our main contribution here is to derive with pencil and paper the implications of segmented

asset markets for the relationships of money, interest rates, and exchange rates for stochastic

processes for shocks motivated by the data. Our derivation sheds light on how the complicated

relationships between money, interest rates, and exchanges rates are all driven by a simpler one,

namely, that between money injections and the marginal utility of active agents. We also show that

some predictions of a simple, quantitative version of our model come close to matching features

of the data which standard models without segmentation have not been able to produce.

We begin with two features of interest rates that have been difficult to account for in standard

monetary models. First, expected inflation and real interest rates generally move in opposite

directions. This has been documented by Barr and Campbell (1997) using indexed and nominal

bonds. (See also Pennacchi 1991 and Campbell and Ammer 1993.) Second, at least since Friedman

(1968), open market operations have been thought to have liquidity effects: money injections lead

initially to a decline in short-term nominal interest rates, a decline which is thought to decay

over time, with short-term rates eventually rising to normal levels or higher. Accordingly, money

injections are thought to steepen the yield curve, lowering long-term rates less than short-term



rates, or even to twist the yield curve by raising long-term rates. The vector autoregression (VAR)

literature has been somewhat successful in confirming these patterns in the data. (See Cochrane

1994 and Christiano, Eichenbaum, and Evans 1998.)

Our model with segmented asset markets can produce both of these features while a standard

model cannot. In a standard model without market segmentation, persistent money injections in-

crease expected inflation but have no effects on real interest rates, so the model induces no relation

between them. In addition, these injections raise nominal interest rates of all maturities and flatten

or even invert the yield curve. In our model, however, money injections move expected inflation

and real interest rates in opposite directions. These injections thus generate the negative correla-

tion between expected inflation and real interest rates that is observed in the data. Also, if asset

markets are sufficiently segmented, money injections in our model have liquidity effects: money

injections lower short-term nominal interest rates and steepen or even twist the yield curve by

lowering short rates and raising long ones. We show that with moderate amounts of segmentation,

our model can produce dynamic responses similar to those found in the VAR literature. (More-

over, our model generates persistent real effects from market segmentation even from anticipated

shocks. Cochrane (1998) argues that a reasonable interpretation of the VAR results may require

models with this property.)

After our look at money and interest rates, we turn to some prominent features of money

and exchange rates. These features are different for countries with different rates of inflation. For

low inflation countries, real and nominal exchange rates have similar variability, these rates are

highly correlated, and both are persistent. For high inflation countries, real exchange rates are

much less volatile than nominal exchange rates.

A standard model can produce none of these features, but our endogenously segmented

model can produce them all. In a standard model, money injections do not affect real exchange

rates, and they affect nominal exchange rates only through their impact on inflation. In our

model, however, when inflation is low, asset markets are segmented and money injections have a

substantial impact on real exchange rates. With moderate amounts of segmentation, therefore,

real and nominal exchange rates have similar variability, they are highly correlated, and both

are persistent, just as in the data. When inflation is high, agents trade more frequently, markets

become less segmented, and money injections have a smaller impact on real exchange rates. Hence,

in our model as in the data on high inflation countries, real exchange rates are significantly less
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volatile than nominal exchange rates.

Our model with segmented markets is a standard cash-in-advance model with the addition

of fixed costs for agents to exchange money and bonds. In our model, the household begins each

period with some cash in the goods market; the money injection is then realized, and the household

then splits into a worker and a shopper. The worker sells the current endowment for cash, and the

shopper decides either to buy goods with just the current real balances or to pay the fixed cost to

transfer cash to or from the asset market and then buy goods. The household’s endowment and,

thus, the household’s cash holdings are random and idiosyncratic.

The shopper follows a cutoff rule that defines zones of activity and inactivity for trading

cash and interest-bearing assets. In the zones of activity, shoppers with high real balances pay a

fixed cost to transfer cash to the asset market, while shoppers with low real balances pay a fixed

cost to obtain cash from the asset market. Shoppers with intermediate real balances are in the

zone of inactivity. They do not pay a fixed cost; they simply spend their current real balances.

Over time, households stochastically cycle through the zones of activity and inactivity as their

idiosyncratic shocks vary. If the fixed cost is zero, all agents are active, and the model reduces to

a standard one similar to that of Lucas (1984).

Ours is a fully stochastic model with both aggregate money shocks and idiosyncratic endow-

ment shocks. In it, agents trade a complete set of state-contingent bonds in the asset market,

and thus, markets are as complete as they can be subject to the trading friction. Even with the

complete markets, however, the trading friction leads agents with different idiosyncratic endow-

ment shocks to have potentially different consumption. Agents use these bonds to insure away

the effects of their idiosyncratic endowment realizations on their portfolios of claims in the asset

market and hence, in equilibrium, all agents have the same wealth. This feature of the model

vastly simplifies the analysis.

When discussing exchange rates, we use a two-country version of our segmented markets

economy. In this two-currency cash-in-advance model, shoppers must use the local currency to

purchase the local good. We abstract from trade in goods across countries in order to focus on

the role of asset market segmentation. By so doing, we follow the spirit of Lucas (1978) in using

marginal rates of substitution to price assets even though there is no trade in equilibrium.

There is a large literature in this general area. Our paper is clearly related to the work of

Baumol (1952) and Tobin (1956). More recently, Jovanovic (1982), Romer (1986), and Chatterjee
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and Corbae (1992) have developed general equilibrium versions of Baumol’s and Tobin’s models

and have used their versions to study how different constant inflation rates affect the steady state.

In contrast to these studies, however, ours examines the dynamic responses of interest rates and

exchange rates to money growth shocks.

Grossman and Weiss (1983) and Rotemberg (1984, 1985) study the dynamic responses of

interest rates and exchange rates in deterministic models with exogenous segmentation. In addition

to this segmentation, the Grossman-Weiss-Rotemberg models exogenously limit asset trade to

uncontingent bonds. Because of that market incompleteness, these models have–besides the

pure liquidity effects from the trading frictions–complicated wealth effects which effectively limit

these studies to onetime unanticipated shocks in deterministic environments. Grossman (1987)

extends this work to include proportional costs of trading money and assets and, hence, endogenous

segmentation, but because of the market incompleteness, his work is also limited to onetime

unanticipated shocks in deterministic environments.

We go beyond this literature by analyzing a fully stochastic model with shocks motivated

by the processes in the data. Such a step is clearly required to develop the empirical implications

of market segmentation. We take this step by drawing on a device of Lucas (1990) that lets us

abstract from wealth effects. Lucas (1990) organizes agents into coalitions in which agents pool

their resources and choose consumption subject to a single budget constraint for the coalition as

a whole, subject to restrictions on the trading technology. Given the trading technology, then,

markets are complete. Thus, money injections have real effects only because of the trading frictions

and not because of additional exogenous market incompleteness. We follow Lucas (1990) and allow

agents to trade a complete set of state-contingent bonds in the asset market in order to eliminate

complicated but inessential wealth effects.

We differ from Lucas (1990) in terms of both the trading friction used and the results

obtained. Lucas assumes that the coalition must divide its cash each period into one portion

to be used to purchase goods and another portion to be traded for bonds in the asset market

before the size of the current open market operation is announced. Unfortunately, in that model,

only unexpected money shocks have real effects. Hence, the model cannot produce the Barr and

Campbell (1997) observations on expected inflation and real interest rates. Moreover, in that

model, liquidity effects last only one period. Fuerst (1992) and Christiano and Eichenbaum (1995)

extend Lucas’ (1990) model to include production, and they get similar results. Grilli and Roubini
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(1992) and Schlagenhauf and Wrase (1995a) extend this work to the open economy. They also

find that the response of real exchange rates to money injections lasts only one period. In related

work, Alvarez and Atkeson (1997) use coalitions to extend the work of Rotemberg (1985), but

with this friction, markets can be highly segmented only if velocity is extremely low.

In an extension of their basic model, Christiano and Eichenbaum (1992) and Chari, Chris-

tiano, and Eichenbaum (1995) add quadratic costs of adjusting the portfolio between periods to

the infinite adjustment costs within the period. They show that this setup can generate persistent

liquidity effects. Evans and Marshall (1998) use that extended model to analyze the responses of

interest rates of different maturities to money shocks. Dotsey and Ireland (1995) and Schlagen-

hauf and Wrase (1995b) criticize the lack of symmetry in such a model between the adjustment

costs within a period and across periods. Dotsey and Ireland (1995) show that when a model has

quadratic costs of adjustment both within and across periods, the liquidity effects are small.

In contrast to the trading frictions in the literature initiated by Lucas (1990), our trading

frictions are close to those of the Baumol-Tobin models. These frictions can generate the Barr and

Campbell (1997) observations and persistent liquidity effects even though costs are symmetric.

Moreover, in our study, all the results can be derived with paper and pencil, so that the essential

driving forces in the model are easily seen.

1. A One-Country Economy
First we sketch the basic outline of our model economy, and then we fill in the details.

A. The Outline

We begin with a one-country cash-in-advance economy with an infinite number of time periods

t = 0, 1, 2, . . . , a government, and a continuum of households of measure 1. Trade in this economy

occurs in two separate locations: an asset market and a goods market. In the asset market,

households trade cash and bonds which promise delivery of cash in the asset market in the next

period, and the government introduces cash into the asset market via open market operations. In

the goods market, households use cash to buy goods subject to a cash-in-advance constraint, and

households sell their endowments of goods for cash. Households face a real fixed cost of γ for each

transfer of cash between the asset market and the goods market. Except for this fixed cost, the

model is a standard cash-in-advance model like Lucas’ (1984).

This economy has two sources of uncertainty: idiosyncratic shocks to households’ endow-
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ments and shocks to money growth. The timing within each period t ≥ 1 is illustrated in Figure
1. We emphasize the physical separation between markets by placing the asset market in the top

half of the figure and the goods market in the bottom half. Households enter the period with the

cash P−1y−1 they obtained from selling their endowments at t − 1, where P−1 is the price level
and y−1 is their idiosyncratic random endowment at t − 1. The government conducts an open
market operation in the asset market, which determines the realization of money growth µ and

the current price level P.

Each household then splits into a worker and a shopper. The worker sells the household

endowment y for cash Py and rejoins the shopper at the end of the period. The shopper takes

the household’s cash P−1y−1 with real value m = P−1y−1/P and shops for goods. The shopper

can choose to pay the fixed cost γ to transfer cash Px with real value x to or from the asset

market. This fixed cost is paid in cash obtained in the asset market. If the shopper pays the fixed

cost, then the cash-in-advance constraint is c = m + x, where c is consumption; otherwise, this

constraint is c = m. Here and elsewhere, we assume that the shopper’s cash-in-advance constraint

binds. Thus, consumers choose not to carry cash in the goods market from one period to the next.

Instead, they save by holding interest-bearing securities in the asset market. In Appendix A, we

provide sufficient conditions for this assumption to hold.

Each household also enters the period with bonds that are claims to cash in the asset market

with payoffs contingent on both the household’s idiosyncratic endowment y−1 and the rate of

money growth µ in the current period. This cash either can be reinvested in the asset market

or, if the fixed cost is paid, can be transferred to the goods market. Likewise, if the fixed cost is

paid, then cash from the goods market can be transferred to the asset market and used to buy

new bonds. In Figure 1, the asset market constraint is B =
R
qB0 + P (x + γ) if the fixed cost

is paid and B =
R
qB0 otherwise, where B denotes the current realization of the state-contingent

bonds and
R
qB0 the household’s purchases of new bonds. At the beginning of the next period,

period t+ 1, this household starts with cash Py in the goods market and contingent bonds B0 in

the asset market.

In equilibrium, some households choose to pay the fixed cost to transfer cash between the

goods and asset markets while others do not. We refer to households that pay the fixed cost as

active and households that do not as inactive. Households with either sufficiently low real balances

or sufficiently high real balances are active. Households with low real balances transfer cash from
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the asset market to the goods market while those with high real balances transfer cash in the

opposite direction. Households with intermediate levels of real balances are in a zone of inactivity

and simply consume their current real balances.

In this economy, bonds are a complete set of contingent claims to cash in the asset market.

These complete contingent claims, however, pay off in the asset market. Accordingly, households

do not choose identical consumption because they must pay a fixed cost to transfer cash between

the goods and asset markets.

B. The Details

Now we flesh out the outline of this economy.

Each household’s endowment y is independent and identically distributed (i.i.d.) across

households and across time with distribution F, which has density f. Let Y =
R
yf(y) dy be the

constant aggregate endowment. Let yt = (y0, . . . , yt) denote a typical history of individual shocks

to endowments up through period t and f(yt) = f(y0)f(y1) . . . f(yt) the probability density over

such histories. Let Mt denote the aggregate stock of money in period t and µt = Mt/Mt−1 the

growth rate of that money supply. Let µt = (µ1, . . . , µt) denote the history of money growth

shocks up through period t and g(µt) the probability density over such histories.

To make all households identical in period 0, we need to choose the initial conditions carefully.

In period 0, households have B̄ units of government debt, which is a claim on B̄ dollars in the

asset market in period 0. In this period, households trade only in bonds, not in goods. In period

1, households also have y0/µ1 real balances in the goods market, where y0 also has distribution F

and µ1 is the money growth shock at the beginning of period 1.

The government issues one-period bonds with payoffs contingent on the aggregate state µt.

In period t, given state µt, the government pays off outstanding bonds B(µt) in cash and issues

claims to cash in the next asset market of the form B(µt, µt+1) at prices q = (µt, µt+1). The

government budget constraint in period t ≥ 1, given state µt, is

B(µt) =M(µt)−M(µt−1) +
Z
µt+1

q(µt, µt+1)B(µ
t, µt+1) dµt+1.(1)

In period 0, this constraint is B̄ =
R
µ1
q(µ1)B(µ1) dµ1.

In the asset market in each period and state, households trade a complete set of one-period

bonds that have payoffs next period which are contingent on both the aggregate event µt+1 and

the household’s endowment realization yt. A household in period t with aggregate state µt and
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individual shock history yt−1 purchases B(µt, µt+1, y
t−1, yt) claims to cash that pay off in the next

period contingent on the aggregate shock µt+1 and the household’s endowment shock yt. We let

q(µt, µt+1, yt) be the price of such a bond that pays one dollar in the asset market in period t+ 1

contingent on the relevant events. Because individual endowments are i.i.d., we assume that these

bond prices do not depend on the individual shock history yt−1.

Instead of letting each household trade in all possible claims contingent on other households’

endowments, we suppose that each household trades only in claims contingent on the household’s

own endowment with a financial intermediary. This intermediary buys government bonds and

trades in the household-specific contingent claims. The latter approach is much less cumbersome

than the former and yields the same outcomes. Specifically, the intermediary buys government

bonds B(µt+1) and sells household-specific claims of the form B(µt+1, yt) to all the households in

order to maximize profits for each aggregate state µt+1:Z
yt
q(µt+1, yt)B(µ

t+1, yt−1, yt)f(yt) dyt − q(µt+1)B(µt, µt+1)

subject to the constraint B(µt+1) =
R
yt B(µ

t+1, yt)f(yt) dyt. Arbitrage implies that q(µt+1, yt) =

q(µt+1)f(yt).

Consider now the problem of an individual household. Let P (µt) denote the price level in

the goods market in period t. In that market, in each period t ≥ 1, a household starts with real
balances m(µt, yt−1). It then chooses transfers of real balances between the goods market and the

asset market x(µt, yt−1), an indicator variable z(µt, yt−1) equal to zero if these transfers are zero

and one if they are not, and consumption c(µt, yt−1) subject to the cash-in-advance constraint:

c(µt, yt−1) = m(µt, yt−1) + x(µt, yt−1)z(µt, yt−1),(2)

where in (2), when t = 1, the term m(µt, yt−1) is given by y0/µ1. New money balances in period

t+ 1 are given by m (µt+1, yt) = P (µt)yt/P (µt+1).

In the asset market, each period a household starts with contingent claims B(µt, yt−1) to

cash delivered in the asset market. The household purchases new bonds and makes cash transfers

to or from the goods market subject to the sequence of budget constraints for t ≥ 1:

B(µt, yt−1) =
Z
µt+1

Z
yt
q(µt, µt+1)B(µ

t, µt+1, y
t−1, yt)f(yt) dµt+1dyt(3)

+ P (µt)
h
x(µt, yt−1) + γ

i
z(µt, yt−1).
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In period t = 0, this asset market constraint is B̄ =
R
µ1

R
y0
q(µ1)B(µ1, y0)f(y0) dy0dµ1. Assume

that both consumption and real bond holdings B(µt, yt−1)/P (µt) are uniformly bounded by some

large constants.

The problem for a consumer is to maximize utility

∞X
t=0

βt
Z Z

U(c(µt, yt−1))g(µt)f(yt−1) dµtdyt−1(4)

subject to the constraints (2)—(3).

The economy has a firm that transfers cash between the asset market and the goods market.

Since each transfer of cash consumes γ units of goods, the total resource cost of carrying out all

transfers at t is γ
R
z(µt, yt−1)f(yt−1) dyt−1. The firm purchases these goods in the goods market

with cash obtained from consumers.

The resource constraint is given byZ h
c(µt, yt−1) + γz(µt, yt−1)

i
f(yt−1) dyt−1 = Y(5)

for all t, µt, and the money market—clearing condition is given by

M(µt)/P (µt) =
Z ³
m(µt, yt−1) +

h
x(µt, yt−1) + γ

i
z(µt, yt−1)

´
f(yt−1) dyt−1(6)

for all t, µt. An equilibrium is defined in the obvious way.

2. Characterizing Equilibrium
Here we solve for the equilibrium consumption and real balances of active and inactive households.

In the next section, we characterize the link between the consumption of active households and

asset prices.

Again, throughout we assume that the cash-in-advance constraint always binds and the

households hold only interest-bearing securities in the asset market. Under this assumption, a

household’s decision to pay the fixed cost to trade in period t affects only its current consumption

and bond holdings and not the real balances it holds in the goods market in later periods.

Inactive households simply consume the real balances they currently hold in the goods mar-

ket. More interesting is the consumption of active households. Since the economy has a complete

set of state-contingent bonds, once a household pays the fixed cost to transfer cash between mar-

kets, it equates its intertemporal marginal rate of substitution to that of other active households.

Since all households are identical ex ante, all active households have a common consumption

9



level cA(µt) that depends only on the aggregate money shock µt and not on their idiosyncratic

endowments.

We first construct the zones of activity and inactivity for an arbitrary consumption level cA,

and then we use the resource constraint to determine the equilibrium level. Define the function

h(m; cA) = [U(cA)− U (m)]− U 0(cA)(cA + γ −m).(7)

This function measures the net gain to a household from switching from being an inactive house-

hold with consumption m to an active household with consumption cA. Note that this measure

of the net gain is simple and static, with only current variables; it is not dynamic. This simplic-

ity stems from our assumption that the cash-in-advance constraint binds, so that a household’s

decision to pay the fixed cost in period t does not affect its real balances and consumption in

future periods. The first two terms on the right side of (7) measure the direct utility gain within

the current period from the household’s switch from inactivity to activity, while the third term

measures the utility cost of the required transfer of real balances from the asset market. With cA

fixed, it is optimal for a household with real balances m to trade cash and bonds and consume cA

if h is positive and not to trade and instead consume m if h is negative. Note that h is strictly

convex in the argument m; it attains its minimum at m = cA and is negative at this minimum if

γ > 0. Thus, h typically crosses zero twice.

Define low and high cutoffs for trade yL (cA, µ) , yH (cA, µ) as the solutions to

h(
y

µ
; cA) = 0(8)

when both of these solutions exist. If (7) is negative for all m < cA, then set yL (cA, µ) = 0, while

if it is negative for all m > cA, then set yH (cA, µ) =∞. This cutoff rule is illustrated in Figure 2.
Note that as the fixed cost γ goes to zero, yL (cA, µ) /µ and yH (cA, µ) /µ converge to cA, so that

all households become active.

Given this form for the zones of activity and inactivity, we use the resource constraint to

determine the equilibrium values of active households’ consumption and corresponding cutoffs.

Together, the cash-in-advance constraint and constraints (5) and (6) imply that the price level is

P (µt) = M(µt)/Y, the inflation rate is πt = µt, real money holdings are m(µ
t, yt−1) = yt−1/µt,

and the consumption of inactive households is c(µt, yt−1) = yt−1/µt. Substituting the inactive

household’s consumption into the resource constraint (5) and using the cutoff rule defined in (8)
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gives

(cA + γ)[F (yL) + 1− F (yH)] + 1

µt

Z yH

yL
yf(y) dy = Y,(9)

where we have suppressed the explicit dependence of cA, yH , and yL on µt. Clearly, these cutoff

points and consumption levels of active households depend only on µt, while the consumption level

of inactive households depends only on (µt, yt−1).

If we fix µt ≥ 1 and use (8) to solve for yL and yH as functions of cA, we see that the left
side of (9) is continuous and strictly monotonic in cA. Thus, any solution to the equations for the

equilibrium values of active households’ consumption and cutoffs is unique. These arguments give

the following. (For details, see Appendix A.)

Proposition 1. The equilibrium consumption of households is given by

c(µt, yt−1) =

 yt−1/µt if yt−1 ∈ (yL (µt) , yH (µt))
cA (µt) otherwise,

where the functions yL (µ), yH (µ), cA (µ) are the solutions to (8) and (9).

In our analysis of asset prices, we can use the sequence of budget constraints (3) to substitute

out for the household’s bond holdings and replace these constraints with a single period 0 constraint

on household transfers of cash between the goods and asset markets. As we show in Appendix A,

period 0 nominal asset prices are determined by the first-order condition for active households:

βtU 0(cA(µt))g(µ
t) = λQ(µt)P (µt),(10)

where λ is the Lagrange multiplier on households’ period 0 budget constraint and Q(µt) is the

price in dollars in the asset market in period 0 for a dollar delivered in the asset market in period

t in state µt. Since all households are identical in period 0, the multipliers in the Lagrangian are

the same for all of them.

In what follows, we suppress reference to the state µt and write the price of an n-period

bond that costs qnt dollars in period t and pays one dollar in all states in period t+ n as

qnt = β
nEt

U 0(cAt+n)
U 0(cAt)

Pt
Pt+n

.(11)

There is a key difference between this formula and the one that arises in the standard cash-in-

advance model. In the standard model, the relevant marginal utility for asset pricing is that of the
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representative household, and the corresponding consumption is aggregate consumption. Here,

the relevant marginal utility for asset pricing in period t is that of the active households in period

t and that expected for them in period t + n. These marginal utilities in periods t and t + n are

not those of any single household, but rather those of whichever households happen to be active

in those periods. This distinction is critical for the results that follow.

3. Asset Prices
Now we develop the economy’s links between money injections and asset prices. The link intro-

duced with market segmentation is how an active household’s consumption responds to a money

injection. We start with this link and then develop formulas for asset prices.

A. Money Injections and Consumption

We develop sufficient conditions for a money injection to raise the consumption of active house-

holds. We begin with a discrete example and follow with a continuous example.

Consider first a simple example in which y takes on three values, y0 < y1 < y2, with

probabilities f0, f1, f2, respectively. We conjecture an equilibrium in which, when money growth

is µ̄, households with the central value of the endowment y1 choose not to trade and those with

low and high endowments y0 and y2 do choose to trade. Under this conjecture, for money growth

shocks µ close to µ̄, we know from the resource constraint that each active household consumes an

equal share of the active households’ aggregate endowment plus the inflation tax levied on inactive

households minus the fixed cost, or from (9)

cA(µ) =
y0f0 + y2f2
f0 + f2

+ (1− 1

µ
)
y1f1
f0 + f2

− γ.(12)

The corresponding cutoffs yL (cA (µ) ,µ), yH (cA (µ) , µ) are found from (8). This conjecture

is valid as long as y0 < yL (cA (µ̄) , µ̄) < y1 < yH (cA (µ̄) , µ̄) < y2.

Clearly, an increase in the money growth rate µ raises the inflation tax levied on each inactive

household’s real balances. In equilibrium, asset prices adjust to redistribute these inflation tax

revenues to active households. In this example, the number of active households does not vary

with the money injection, so the consumption of each active household increases. Specifically,

d log cA
d log µ

=
(y1f1)/µ

cA(f0 + f2)
,(13)

which is the ratio of the total consumption of inactive households to that of active households.
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Now consider an example in which y has a continuous density. Here, as before, an increase

in the money injection reduces beginning of period real balances for every household. But now

with a continuous density of these real balances across households, some households switch zones.

Because inflation has reduced real balances, the initially inactive households near the lower cutoff

yL find it optimal to pay the fixed cost and become active while the initially active households

near the upper cutoff yH find it optimal to not pay the fixed cost and become inactive. Both

of these switches tend to reduce the level of active households’ consumption. Intuitively, active

households as a group pool their real balances and have equal consumption. Inactive households

that become active bring lower than average real balances to this group while active households

that become inactive take away higher than average real balances. As long as the fraction of

households near these cutoffs is not too large, the consumption of active households increases with

a money injection.

More formally, differentiating (8)—(9) gives(
[F (yL) + 1− F (yH)] + µf(yL)

Ã
cA + γ − yL

µ

!
ηL − µf(yH)

Ã
cA + γ − yH

µ

!
ηH

)
dcA
dµ

(14)

=
1

µ

Z yH

yL

y

µ
f(y) dy +

Ã
yL
µ
− cA − γ

!
f(yL)

yL
µ
+

Ã
cA + γ − yH

µ

!
f(yH)

yH
µ
,

where ηi = U
00(cA)[cA + γ − (yi/µ)]/[U 0(cA) − U 0(yi/µ)]. From (7) and (8) we know that yL/µ <

cA < (yH/µ) − γ. Thus, ηH and ηL are positive and so is the term in braces on the left side of

(14). On the right side of (14), the first term is positive and the last two terms are negative, so

without further restrictions, the sign of the right side is ambiguous. The first term measures the

effect of the inflation tax on the consumption of inactive households when the zone of inactivity

is held fixed. The last two terms measure the change in the consumption of inactive households

that results from a change in the zone of inactivity. The fraction f(yL) of households at the lower

edge of the zone with real balances yL/µ become active, and the fraction f(yH) of households at

the upper edge of the zone with real balances yH/µ become inactive. As long as the fraction of

households at these edges is not too large, the consumption of active households increases.

For example, when y is uniform on [0, 1] and yi are in (0, 1), the right side of (14) simplifies

to (yH − yL)(cA + γ)/µ, which is positive. Thus, under these restrictions, dcA/d log µ is positive.
In Appendix B, we give an example in which dcA/d log µ is positive and y has a log-normal

distribution. Examples can, of course, also be constructed in which the fraction of households
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at the edges of the zone is large and an increase in money growth decreases the consumption

of active households. Here, though, we focus on what we consider the standard case when the

opposite holds.

B. Money Injections and Asset Prices

We now turn to the link between money injections and asset prices. In order to get analytical

results, we make several assumptions. Let the log of money growth in period t be normally

distributed and have constant conditional variance over time. Let µ̄ be defined by log µ̄ = E log µt,

where E is the unconditional expectation. Let U(c) = c1−σ/(1 − σ), where the risk aversion
parameter σ > 0. Let c̄A denote the consumption of active households when money growth is

equal to µ̄. To a first-order approximation, the log of an active household’s marginal utility is

given by logU 0 (cAt) = logU 0 (c̄A)− φ (log µt − log µ̄), where

φ = σ
d log cA
d log µ

(15)

evaluated at µ = µ̄. The parameter φ is the elasticity of an active household’s marginal utility

with respect to a money injection. Given these assumptions, we will analyze the relation between

money and interest rates.

4. Interest Rate Dynamics
Now we illustrate the dynamics of money injections, expected inflation, and interest rates. We

first show that the model can produce the negative relation between expected inflation and real

interest rates noted by Barr and Campbell (1997). We then give conditions under which the effect

of money injections on real interest rates dominates their effect on expected inflation, so that

money injections have liquidity effects.

We work out the model’s implications for the dynamics of the interest rate term structure

for two common processes for money growth and inflation: an autoregressive process and a long-

memory process. We begin with the autoregressive process because it is simple and it generates

the well-known Vasicek (1977) model for the dynamics of the term structure. Moreover, according

to Christiano, Eichenbaum, and Evans (1998), first-order autoregressive processes do a good job

of approximating the responses of money growth and interest rates to a money shock. Using a

different VAR, however, Cochrane (1994) has found a more protracted response for money growth

to a money shock. Motivated by this finding, we study a process for money growth with impulse
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responses that decay more slowly than those of a first-order autoregressive process. For simplicity,

we consider a long-memory process. We show that with such a process, a money injection leads to

a fall in the short-term nominal rate followed by a rise. We show that the shock also twists the yield

curve: on impact, short rates fall and long rates rise. At least since Friedman (1968), economists

have argued that money injections have these effects on interest rates. Moreover, Cochrane (1994)

has found such a response for interest rates in his VAR.

Throughout the following analysis, money injections have two effects on nominal interest

rates: an expected inflation effect and a segmentation effect, as can be seen from the Fisher

equation: ı̂t = r̂t+Etπ̂t+1, where i is the nominal interest rate and r is the real interest rate. (Here

and elsewhere, a caret over a character denotes a log-deviation.) Using a log-linear approximation

to (11), we can express the expected inflation effect as

Etπ̂t+1 = Etµ̂t+1.(16)

This holds because in the model, both output and velocity are constant, so expected inflation is

simply expected money growth. Similarly, we can express the segmentation effect as

r̂t =
dU 0(cAt)− Et dU 0(cAt+1) = φ(Etµ̂t+1 − µ̂t),(17)

where φµ̂t and φEtµ̂t+1 are the effects of the money injection on the active households’ marginal

utility in periods t and t+ 1.

In the standard model, γ = 0, so φ = 0 and real interest rates are constant. In our model,

γ > 0, so φ > 0; thus, a money growth shock that increases µt also increases the consumption

of active households in t and drives down their marginal utility in t. If the money growth shock

raises expected money growth in t + 1 as well, then it raises consumption and lowers marginal

utility for active households in t+ 1. As long as the money growth process is mean-reverting, so

that Etµ̂t+1 − µ̂t is decreasing in µ̂t, an increase in money growth drives down real interest rates.
With such processes, the model reproduces the negative relation between expected inflation and

real rates found by Barr and Campbell (1997), since a money injection drives expected inflation

up and real rates down.

Our model produces liquidity effects when the segmentation effect (17) dominates the ex-

pected inflation effect (16). The overall magnitude of the segmentation effect depends on two

parameters: the elasticity of the marginal utility of active households with respect to money
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growth φ and the persistence of a money growth shock as measured by Etµ̂t+1− µ̂t. The segmenta-
tion effect increases the higher is φ, that is, the more responsive is an active household’s marginal

utility to a money injection. This effect is smaller the greater is the persistence of money growth.

If money growth is temporary, then a given money injection will lead to a temporary increase

in active households’ consumption and, hence, to a relatively large drop in the real interest rate.

As the shock to money growth becomes more persistent, a given money injection leads to a more

permanent increase in active households’ consumption and, hence, to a smaller drop in the real

interest rate.

We turn now to an analysis of the two common processes for money growth and inflation.

Example 1. Autoregressive Process

Assume that money injections satisfy µ̂t+1 = ρµ̂t + εt+1, where ρ is the persistence of the money

shock and εt+1 is a normal, i.i.d. innovation with mean zero and variance σ2² . The expected

inflation effect is given by Etπ̂t+1 = ρµ̂t, while the segmentation effect is given by r̂t = φ(ρ− 1)µ̂t
so that ı̂t = [φ(ρ− 1) + ρ]µ̂t. As long as money growth is mean-reverting, so that ρ < 1, expected
inflation and real rates move in the opposite direction. Notice that if

φ >
ρ

1− ρ ,(18)

then the segmentation effect dominates the expected inflation effect, and a money injection leads

to a fall in nominal interest rates on impact.

Consider next the dynamics of the short-term interest rate. Since Etπ̂t+k+1 = ρkEtπ̂t+1

and Etr̂t+k = ρkr̂t, we have that Etı̂t+k = ρk ı̂t. Thus, real and nominal interest rates have the

same persistence as do money shocks. If (18) holds, then a money injection leads nominal rates

to initially fall and decay back to zero at rate ρ. Clearly, these liquidity effects are persistent

whenever money shocks are persistent.

Consider the effects on the yield curve. In our model, the dynamics of the term structure

satisfies the expectations hypothesis with a constant risk premium: movements in long-term rates

are an average of movements in expected future short-term rates. In fact, this is true for any

log-linear model with constant conditional variances. When (18) holds, so that the segmentation

effect dominates the expected inflation effect, a money injection lowers the shorter yields by more

than the longer yields and thus steepens the yield curve. Each yield follows an autoregressive

process and returns to its mean value at rate ρ. For this example, then, our general equilibrium
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model generates the dynamics of the term structure summarized by the Vasicek (1977) model.

(Of course, there is substantial evidence that the expectations hypothesis is a poor approximation

of the dynamics of the term structure; see Campbell, Lo, and MacKinlay 1997. Addressing that

problem, however, is beyond our scope here.)

Consider the magnitude of φ required for liquidity effects for this autoregressive example.

Christiano, Eichenbaum, and Evans (1998) argue that the impulse response for M2 growth fol-

lowing a money shock is well-approximated by an autoregressive process with ρ = .5. With this

persistence, (18) implies that the model produces liquidity effects for φ ≥ 1. Getting a handle on
the level of segmentation in the data is harder. To get a rough feel for what different levels of φ

entail, note that combining the formula from our discrete example (13) with equation (15) gives

that

φ = σ
Total consumption of inactive households
Total consumption of active households

.(19)

Consider φ = 2. In order to interpret this value, we need to take a stand on the risk aversion

parameter σ. The literature uses a wide range of estimates for σ. The business cycle literature

commonly uses σ = 2, but estimates easily range as high as σ = 8. With σ = 2, (19) implies that

we need half of the households to be not actively trading money for interest-bearing assets in any

given period in order to generate φ = 2. With σ = 8, we only need one-fifth of the households to

be inactive in order to get φ = 2.

We illustrate the model’s predictions in Figure 3. In the top panel of the figure, we graph

the impulse responses to a money shock of money growth and (annualized) short-term nominal

interest rates with φ = 2. The responses are similar to those found by Christiano, Eichenbaum,

and Evans (1998) using M2. In the bottom panel of Figure 3, we graph the yield curves at three

different times: at the time of the shock’s impact, one quarter after the shock, and three quarters

after the shock. These responses show the yield curve steepening on impact and then reverting

slowly to its normal position. Since interest rates in the model satisfy the expectations hypothesis,

the impulse response plot for the short-term rate completely determines the dynamics of yields

of long maturities. (Actually, the impulse response of Etit+k is the response of the one-period

forward rate of maturity k in period t, and the yields are just averages of the forward rates.) So

the plots in the two panels of Figure 3 are just two ways to summarize the same information.

So far, we have worked out relations between money injections and interest rates for a simple
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first-order autoregressive process for money growth. In that example, a money injection either

lowers interest rates at all maturities or raises them at all maturities. This pattern is not a general

feature of our model, but rather results from the special nature of a first-order autoregressive

process.

To illustrate the implications of our model more generally, we develop these relations when

money growth has a general moving-average representation µ̂t =
P∞
j=0 θjεt−j , where the shocks

εt−j are independent and N(0, σ2ε). In this case, equations (16) and (17) characterizing the impact

of money injections on expected inflation and the real interest rate become Etπ̂t+1 =
P∞
j=1 θjεt+1−j

and r̂t = φ
P∞
j=0 (θj+1 − θj) εt−j . Accordingly, the impulse responses of expected inflation and the

real interest rate following a monetary shock εt in period t are given by

Etπ̂t+k+1 = θk+1εt

Etr̂t+k = φ (θk+1 − θk) εt.

In general, then, the strength of the expected inflation effect following a monetary shock depends

on the level of these moving-average coefficients θk while the strength of the segmentation effect

depends on the difference (θk+1−θk) of these moving average coefficients. Thus, a money injection
can cause interest rates to fall at some horizons and rise at other horizons. In particular, a positive

money injection εt lowers the expected nominal interest rate at t+ k if

θk+1 + φ (θk+1 − θk) < 0.(20)

When money injections are a first-order autoregressive process, θk = ρk and (20) reduces to (18). In

this case, money injections either lower interest rates at all horizons k or raise them at all horizons.

Intutitively, this happens because when the moving-average coefficients decay geometrically, the

relative strengths of the segmentation effect and the expected inflation effect are the same at all

horizons.

At least since Friedman (1968), economists have argued that money injections lead to an

initial decline in short-term interest rates followed by a rise. If money injections are a moving-

average process in which the coefficients θk decline rapidly at first and more slowly later, then (20)

implies that the segmentation effect is relatively stronger at shorter horizons and relatively weaker

at longer horizons. Thus, a money injection with such moving-average coefficients can lead to an
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initial decline in nominal interest rates followed by a subsequent rise. We next provide a simple

parametric example illustrating this point.

Example 2. Long-Memory Process

Consider the moving-average process µ̂t =
P∞
j=0 θjεt−j, where θj are the moving-average coefficients

and εt is a white noise process. The long-memory process is a moving-average process in which

the coefficients satisfy the recursion θj =
³
1− 1−d

j

´
θj−1 for j ≥ 1 and −1/2 < d < 1/2, and the

εt−j are independent and distributed N(0,σ2ε). The parameter d controls the rate of decay of the

moving-average coefficients. These coefficients decay at a rate (1− d)/j < 1. For large j, this rate
approaches zero, which is the source of the long memory.

Using (16)—(17), we can show that the short-term nominal interest rate ı̂t =
P∞
j=1 αjεt+1−j ,

where

αj =

"
−φ(1− d)

j
+

Ã
1− (1− d)

j

!#
θj−1.

Here, in the brackets, the first term is the segmentation effect and the second is the expected

inflation effect. Since the coefficients θj are all positive, for large enough j the expected inflation

effect must dominate the segmentation effect, and αj must be positive. If φ > d/(1− d), then for
j = 1, the segmentation effect outweighs the expected inflation effect; so for small j, αj is negative.

If we ignore integers, we see that αj goes from negative to positive at j∗ = (1 + φ)(1− d). Notice
that the more segmented is the market, the longer is the period in which the segmentation effect

outweighs the expected inflation effect.

We illustrate the pattern implied by the long-memory process with d = 1/4 and φ = 2 in

Figure 4. In the top panel, we see that the nominal rate drops on the money shock’s impact

and then rises in the third quarter after the shock. Interestingly, this pattern is similar to that

estimated by Cochrane (1998), which he argues is representative of results in the VAR literature.

In the bottom panel, we plot the yield curves on impact, one quarter after the shock, and three

quarters after the shock. In this figure, we see that on impact, the money growth shock twists the

yield curve, lowering short yields and raising long ones. After several quarters, short yields rise

and all yields slowly move back to their average values.

The different responses of nominal interest rates to a money injection, shown in Figures

3 and 4, stem from the different patterns of the moving-average coefficients implied by the two

processes for money growth. In Figure 5 we plot these moving-average coefficients. As we have
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discussed, with the autoregressive process, these coefficients decline geometrically and the relative

strengths of the segmentation effect and the expected inflation effect are the same at all horizons;

thus, the impulse response of nominal interest rates has the same sign at all horizons. Relative

to the moving-average coefficients of the autoregressive process, those of the long-memory process

decline more rapidly at first and more slowly later. From (20) we see that such a pattern leads

nominal interest rates to decline at first and then rise later.

5. Exchange Rates
Having demonstrated that our segmented market model can reproduce the major observed interest

rate responses to money injections, we turn now to exchange rates. Here the features we want to

reproduce are different for countries with different rates of inflation. In low inflation countries, real

and nominal exchange rates have similar volatility, are highly correlated, and are persistent. (See

Mussa 1986 and our Table 1.) In high inflation countries, nominal exchange rates are substantially

more volatile than real exchange rates. (See Figure 7, discussed below.) The standard model

cannot reproduce these observations. We develop a two-country version of our segmented markets

economy that can.

A. A Two-Country Economy

First we develop a more sophisticated representation of monetary policy than we used in the one-

country model. Earlier we explored the implications of the one-country model only for the impulse

responses to exogenous money shocks. Here we explore the model’s predictions for some uncondi-

tional moments of the data, so we need to take a firmer stand on the policy rule followed by the

monetary authority. As we document below, in the data, nominal interest rates are substantially

more persistent than money growth rates. To capture this, we model money growth as the sum

of an exogenous component and an endogenous component which offsets a type of money demand

shock.

Consider now a two-country, cash-in-advance economy that extends the work of Lucas (1982).

We refer to one country as the home country and the other as the foreign country. For simplicity,

we abstract from trade in goods across countries by having the households in each country desire

only the local good. Specifically, households in the home country use the home currency, called

dollars, to purchase a home good. Households in the foreign country use the foreign currency,

called euros, to purchase a foreign good. In the asset market, households trade the two currencies
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and dollar and euro bonds which promise delivery of the relevant currency in the asset market in

the next period, and the two governments introduce their currencies via open market operations.

As before, each transfer of cash between the asset market and any individual household in either

goods market has a real fixed cost of γ. Households in the home country choose to transfer only

the home currency, and those in the foreign country choose to transfer only the foreign currency.

In the asset market, however, households may choose to hold their wealth in bonds denominated in

either currency, and as a result, the relationship between the nominal exchange rate and the prices

of bonds denominated in the two currencies is consistent with the standard (covered) interest rate

parity conditions.

In order to generate a type of money demand shock, we allow shocks to the distribution of

idiosyncratic endowments in the two countries. The densities of the endowments are now given

by f(y; ηt) and f(y
∗; η∗t ), where ηt and η

∗
t are i.i.d. shocks, both with mean η̄. Thus, the aggregate

shock is st = (µt, µ
∗
t , ηt, η

∗
t ), and s

t = (s1, . . . , st) is its history. Let g(st) denote the density of the

probability distribution over such histories.

We let home households trade a complete set of dollar-denominated claims with a world

intermediary, and we let foreign households similarly trade euro-denominated claims. The home

government’s bonds are dollar bonds, and its budget constraint is (1) as before. The foreign

government’s bonds are euro bonds, and its budget constraint is the obvious analog. The world

intermediary buys both dollar- and euro-denominated government bonds and trades in both dollar

and euro household-specific contingent claims in order to maximize profits for each aggregate state

st+1. Lack of arbitrage across currencies implies that q(st, st+1) = q∗(st, st+1)e(st)/e(st+1). Here q

and q∗ are the prices for one-period dollar and euro bonds and e is the nominal exchange rate in

terms of dollars per euro. We use this relationship to solve for movements in nominal exchange

rates.

To solve for the period 0 nominal exchange rate e0, we need to choose the initial conditions

carefully. In period 0, home households have B̄h units of the home government debt and B̄∗h units

of the foreign government debt, which are claims on B̄h dollars and B̄∗h euros in the asset market

in that period. In period 0, there is no trade in goods; households simply trade bonds. Likewise,

foreign households start period 0 with B̄f units of the home government debt and B̄∗f units of the

foreign government debt in the asset market. We require that B̄h + B̄f = B̄ and B̄∗h + B̄
∗
f = B̄

∗,

where B̄ is the initial stock of home government debt in dollars and B̄∗ is the initial stock of
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foreign government debt in euros.

The constraints for the home households are the same as before except that now, in period

0, (3) is given by B̄h + e0B̄∗h =
R
s1

R
y0
q(s1)B(s1, y0)f(y0) ds1dy0. The constraints for the foreign

households are the obvious analogs, with the foreign households having initial assets of (B̄f/e0)+B̄∗f

in euros in period 0. The resource constraint for the home good and the money market—clearing

conditions for dollars are similar to those in (5) and (6) except that the distribution of endowments

is now indexed by the current realization ηt. Analogous constraints hold for the foreign good and

euros.

In equilibrium, the period 0 nominal exchange rate e0 =
³
B̄ − B̄h

´
/B̄∗h. To see this, iterate

on (1) and (3) for the home household, and take limits to show that B̄ = B̄h + e(s0)B̄∗h. Clearly,

this exchange rate e0 exists and is positive as long as B̄h < B̄ and B̄∗h > 0 or B̄h > B̄ and B̄
∗
h < 0.

The equilibrium consumption of households in the home country is similar to that described

in Proposition 1. Specifically, the cutoff rule for trade is the same, but (9) is replaced by

(cA + γ)[F (yL; ηt) + 1− F (yH ; ηt)] +
1

µt

Z yH

yL
yf(y; ηt) dy = Y,(21)

so that the equilibrium consumption of active home households is given by cA(µt; ηt). The anal-

ogous result holds for households in the foreign country. This implies that active household

consumption in the two countries responds only to injections of the local currency and the local

shock to endowments.

To develop the asset pricing formulas for this two-country economy, recall from (10) that

period 0 nominal dollar asset prices Q(st) are given by the marginal utility of a dollar for active

home households. Likewise, period 0 euro asset prices Q∗(st) are given by the analogous marginal

utility for active foreign households. Arbitrage requires that nominal exchange rates satisfy e(st) =

e0Q
∗(st)/Q(st). We define the real exchange rate as x(st) = e(st)P ∗(st)/P (st), which is then given

by

x(st) = e0
λ

λ∗
U 0(c∗A(µ

∗
t ; η

∗
t ))

U 0(cA(µt; ηt))
.(22)

Since P (st) =M(st)/Y and P ∗(st) =M∗(st)/Y, the nominal exchange rate is e(st) = x(st)M(st)/

M∗(st). In period t in aggregate state st, state-contingent dollar bond prices are given by (11) and

likewise for state-contingent euro bond prices.
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B. Exchange Rates With Low Inflation

Now we describe a process for monetary policy relevant for low inflation countries and derive the

model’s implications for the volatility and persistence of exchange rates.

In the data, interest rates are much more persistent than money growth. Yet recall from

Example 1 that in the simple model with only money shocks, interest rates and money growth

are equally persistent. A simple way to address this discrepancy between the data and the simple

model is to assume that part of monetary policy is exogenous and persistent while another part

is endogenous and offsets transient money demand shocks. The endogenous part essentially adds

a transient component to money growth that does not appear in interest rates.

In our two-country model, therefore, we assume that the monetary authority follows an

interest rate policy of the form ı̂t+1 = ρı̂t+ εt+1. It implements this policy rule by choosing money

growth to be the sum of two components:

µ̂t = µ̂1t + v(µ1t, ηt),(23)

where µ1t is the exogenous part of monetary policy that follows an autoregressive process µ̂1t+1 =

ρµ̂1t + εµt+1 and v(µ1t, ηt) is the endogenous part of monetary policy that offsets the shock ηt

to endowments. Thus, v(µ1t, ηt) solves cA(µ1t + v; ηt) = cA(µ1t; η̄), so that, in equilibrium, the

consumption of active households does not respond to the shock ηt. Clearly, ∂v(µ1, η̄)/∂µ1 = 0. In

what follows, we suppress all references to η̄ and instead write the consumption of active households

as cA(µ1t). We assume that foreign money growth is set in a similar way and that the shocks to

both the exogenous and endogenous parts of foreign monetary policy are independent of those to

home monetary policy.

To a first-order approximation, the log of v is given by v̂t = κη̂t. The log of the marginal

utility of consumption for active home households is given as before, with φ defined as in (15), with

µ1 replacing µ. This is because the endogenous part of monetary policy simply offsets the impact

of the shock θt to endowments on the consumption of active households. The real interest rate thus

depends only on the exogenous part of monetary policy, and r̂t = φ(ρ−1)µ̂1t. In contrast, inflation
and money growth depend on both components and are given by π̂t+1 = µ̂t+1 = µ̂1t+1 + κη̂t+1.

To see that the money growth rate rule in (23) implements the assumed interest rate rule,

note that since Etπt+1 = ρµ̂1t, the nominal interest rate is

ı̂t = r̂t + Etπ̂t+1 = [φ(ρ− 1) + ρ]µ̂1t.
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Thus, the serial correlation of the nominal interest rate is equal to that of the exogenous part of

monetary policy, namely ρ. The serial correlation of inflation is lower than ρ because of the i.i.d.

component from money demand shocks.

Consider the implications of this model for the behavior of real exchange rates. Equation

(22) implies that

x̂t = φµ̂1t − φ∗µ̂∗1t,(24)

where φ∗ is the elasticity of the marginal utility of consumption of active foreign households with

respect to a foreign money injection. Clearly, then, the more segmented a market is, the greater is

the volatility of real exchange rates. Moreover, the persistence of real exchange rates is determined

by the persistence of the interest rate rule.

To get a feel for the quantitative implications of the model, consider a simple numerical

example. We set ρ = .95, which is the serial correlation of the U.S. federal funds rate on a quarterly

basis (1960:1—1999:3). Note that here the unconditional persistence of the federal funds rate is

much higher than the conditional response of that rate following a money shock as estimated by

Christiano, Eichenbaum, and Evans (1998). They argue that the monetary authority sets interest

rates as a function of some other variables in the economy which are very persistent. Here we

abstract from those other variables, so we simply make the interest rates follow a highly persistent

AR(1) process.

We choose κ std(η̂) so that the serial correlation of money growth is .75, which is the serial

correlation of quarterly M2 growth (1960:1—1999:3). We assume symmetry across countries, so

that φ = φ∗, and we assume that shocks are independent across countries. We simulate the model

for 120 time periods, HP-filter the data, and consider the mean values of several statistics over 50

simulations.

In Figure 6, we plot against φ three statistics based on these simulations: the standard devi-

ation of the nominal exchange rate relative to that of the real exchange rate [std(log e)/std(log x)],

the correlation of the real and nominal exchange rates [corr(log e, log x)], and the serial correlation

(or persistence) of the real exchange rate [corr(log x, log x−1)].We see that as φ becomes large, the

volatility of the real exchange rate becomes closer to that of the nominal exchange rate, and the

correlation of the real and nominal rates grows. We also see that real exchange rates essentially

inherit the persistence of nominal interest rates regardless of φ.
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In Table 1 we report on these same three statistics for a number of low inflation countries.

Comparing Figure 6 to Table 1, we see that as the segmentation parameter is increased to 6, the

relative volatility and the correlation of nominal and real exchange rates in the model begin to

approach 1, the level that both approximate in the data. The persistence of real exchange rates in

the model is similar to that in the data (around .8) for any value of the segmentation parameter.

The numbers in this example are useful to give a feel for how the model works with a

moderate amount of segmentation. To interpret these levels of the segmentation parameter φ,

recall the calculation from our discrete example given in equation (19) that φ is equal to the

utility curvature parameter σ times the ratio of the total consumption of inactive households to

the total consumption of active households. If we assume that roughly half of the households are

inactive in each period, then values of φ ranging from 2 to 6 as illustrated in Figure 6 correspond

to values of σ ranging from 2 to 6, all well within the range of available estimates of this parameter.

Clearly, to do a more complete comparison between the model and the data, we would need to

include real shocks, which would raise the volatility of real exchange rates.

C. Exchange Rates With High Inflation

Now we shift to high inflation countries. We first document that in high inflation countries, the

volatility of nominal exchange rates is substantially greater than that of real exchange rates, while

in low inflation countries, these volatilities are similar. This difference is obvious in Figure 7, which

displays the ratio of the standard deviations of the nominal and real exchange rates based on HP-

filtered data for 49countries.1 In this section, we discuss how the degree of market segmentation,

as measured by the parameter φ, varies with the average rate of money growth. In particular, we

show that if the average rate of inflation is high enough, almost all households choose to pay the

fixed cost, so that asset markets are no longer segmented. Thus, as inflation becomes high enough,

the volatility of real exchange rates becomes much smaller than that of nominal exchange rates.

For simplicity, consider again an example in which y takes on three values, y0 < y1 < y2,

with probabilities f0, f1, f2, respectively, and hold the money demand shock η constant. Consider

the degree of segmentation in a country with low average inflation µ̄A and in a country with high

average inflation µ̄B. For the low inflation country, assume that y0 < yL (cA (µ̄A) , µ̄A) < y1 <

yH (cA (µ̄A) , µ̄A) < y2. With a utility function of the form U(c) = c1−σ/(1− σ),

φ = σ
d log cA
d log µ

=
σ(y1f1)/µ̄A
cA(f0 + f2)

.(25)
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For the high inflation country, we proceed as follows. Under an assumption that households’

utility is sufficiently curved, we can show that there exists a high enough inflation rate such that

all households pay the fixed cost. More formally, we have

Proposition 2. Assume that the support of y is bounded by ȳ and that 1 − σ < Y−γ
Y
. Then a

sufficiently high inflation rate exists such that all households are traders and φ = 0.

Proof. Let xL ∈ [0, Y − γ] be the solution to h(x;Y − γ) = 0. We first show that, under our

assumption on σ, this solution with xL > 0 exists. Then we show that when µ̄B > ȳ/xL, all

households choose to pay the fixed cost to trade.

To show that xL > 0, we need to show that there is a solution to h(x;Y − γ) = 0 in the

interval (0, Y −γ). Recall that h(x;Y −γ) is minimized at x = Y −γ and is negative at this point.
Thus, we need only show that h(0;Y − γ) > 0. The condition on σ ensures that this inequality
holds. Note that h(0;Y − γ) ≤ 0 if that condition is violated.

To see that all households choose to trade when µ̄B > ȳ/xL, observe that cA = Y − γ,
that yL = xLµ̄B, yH = xH µ̄B solve (7) and (9), and that yL > ȳ. Thus, we know that traders’

consumption does not depend on money growth µ and φ = 0.

Proposition 2 implies that as inflation becomes sufficiently high, the segmentation effect

diminishes and real exchange rates become much less volatile than nominal exchange rates. One

can construct examples in which the segmentation parameter φ declines smoothly with µ. In this

sense, our model can generate the pattern in the data documented in Figure 7.

6. Conclusion
We have developed a model in the spirit of Baumol (1952) and Tobin (1956) that captures the idea

that when a government injects money through an open market operation, only a fraction of the

households in the economy are on the other side of the transaction; hence, money injections have

segmentation effects in addition to their standard Fisherian effects. We have deliberately kept the

model simple to allow an analytical solution. We have shown that this model generates features

of the data which standard models do not: a negative relation between expected inflation and real

interest rates and, with moderate amounts of segmentation, both persistent liquidity effects and

volatile and persistent exchange rates.

In order to generate volatile real exchange rates, a model needs frictions in both the goods
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and asset markets. (See, for example, Chari, Kehoe, and McGrattan 1998.) Here we abstract

from friction in the goods market, such as sticky prices (for example, Obstfeld and Rogoff 1995),

in order to focus on friction in the asset market. Our work thus complements work on goods market

frictions and highlights a potentially important component of a complete model of exchange rates

with frictions in both types of markets.

The finance literature discusses two other features of the data that the standard model

cannot generate and our segmented markets model potentially can. In the data, the average

return on long-term bonds is substantially higher than the average return on short-term bonds,

and high interest rate currencies tend to appreciate. It is easy to show that our model can generate

these features of the data at a qualitative level. However, preliminary calculations using Hansen-

Jagannathan (1991) bounds suggest that more work needs to be done before a version of our model

can match the features quantitatively.
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We thank Robert E. Lucas, Jr., Dean Corbae, and Stanley Zin for their comments and the

National Science Foundation for its support. The views expressed herein are those of the authors

and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve

System.
1We use the International Monetary Fund’s data from its publication International Finan-

cial Statistics covering the period 1970:1—1999:3 for the following countries: Argentina, Aus-

tralia, Austria, Belgium, Brazil, Canada, Chile, Colombia, Denmark, Finland, France, Germany,

Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Korea, Malaysia,

Mexico, the Netherlands, New Zealand, Norway, Peru, the Philippines, Poland, Portugal, Singa-

pore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, the United Kingdom,

and Venezuela. For each country, we use the bilateral nominal exchange rate and the consumer

price index—based bilateral real exchange rate with the United States.

28



Appendix A

In this appendix, we provide sufficient conditions to ensure that households never carry over cash

in either the goods market or the asset market.

To allow for the possibility that a household may hold cash, we modify the household con-

straints as follows. In the goods markets, we denote unspent real balances that the shopper might

carry over from goods shopping by a(µt, yt−1). We rewrite the constraint (2) as

a(µt, yt−1) = m(µt, yt−1) + x(µt, yt−1)z(µt, yt−1)− c(µt, yt−1).(26)

We write new money balances as m (µt+1, yt) = P (µt)[yt + a(µt, yt−1)]/P (µt+1) and add the

cash-in-advance constraint a(µt, yt−1) ≥ 0. In the asset market, we replace the budget constraints
(3) with the sequence of budget constraints for t ≥ 1:

B
³
µt, yt−1

´
=
Z
µt+1

Z
yt
q(µt, µt+1)B(µ

t, µt+1, y
t−1, yt)f(yt) dµt+1dyt+(27)

N(µt, yt−1)−N(µt−1, yt−2) + P (µt)
h
x(µt, yt−1) + γ

i
z(µt, yt−1),

where N(µt−1, yt−2) is cash held over from the previous asset market and N(µt, yt−1) is cash held

over into the next asset market. Let N(µt, yt−1) ≥ 0 and N(µt−1, yt−2) = N0 in period t = 1. In
period t = 0, this asset market constraint is B̄ =

R
µ1

R
y0
q(µ1)B(µ1, y0)f(y0)dy0dµ1+N0. Otherwise,

the household’s problem is unchanged.

We develop our sufficient conditions in several steps. We first characterize the household’s

optimal choice of c and x given prices and arbitrary rules for m,a, and z and summarize these

results in Lemma 1. We then characterize the household’s trading rule z given an arbitrary rule for

m, a and the optimal rules for c and x, and we summarize these results in Lemma 2. These lemmas

complete the proof of Proposition 1 in the text. In Lemma 3, we provide sufficient conditions on

the money growth process and the endowments process to ensure that a and N are always zero.

Start by using the sequence of budget constraints (27) to substitute out for the household’s

bond holdings. Replace these constraints with a single period 0 constraint on household transfers

of cash between the goods and asset markets. Any bounded allocation and bond holdings that

satisfy (27) also satisfy a period 0 budget constraint:

∞X
t=0

Z
Q(µt)

Z
yt−1

n
P (µt)

h
x(µt, yt−1) + γ

i
z(µt, yt−1) +(28)
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N(µt, yt−1)−N(µt, yt−2)
o
f(yt−1) dyt−1dµt ≤ B̄.

Thus, the household’s problem can be restated as follows. Choose real money holdings m

and a, trading rule z, consumption and transfers c and x, and cash in the asset market N, subject

to constraints (26) and (28) and the cash-in-advance constraint.

Consider now a household’s optimal choice of consumption c(µt, yt−1) and transfers of dollar

real balances x(µt, yt−1) given prices Q(µt), P (µt), arbitrary feasible choices of real money holdings

m (µt, yt−1) and a(µt, yt−1), and a trading rule z(µt, yt−1). These choices maximize the Lagrangian

corresponding to the household’s problem. Let ν(µt, yt−1) be the multiplier on (26) and λ be

the multiplier on (28). The first-order conditions corresponding to c and x, respectively, are

then given by βtU 0(c(µt, yt−1))g(µt)f(yt−1) = ν(µt, yt−1) and λQ(µt)P (µt)z(µt, yt−1)f(yt−1) =

ν(µt, yt−1)z(µt, yt−1). For those states such that z(µt, yt−1) = 1, these two first-order conditions

imply that βtU 0(c(µt, yt−1))g(µt) = λQ(µt)P (µt). Since all households are identical in period 0,

the multipliers in the Lagrangian are the same for all households. We summarize this discussion

as follows:

Lemma 1. All households that choose to pay the fixed cost for a given aggregate state µt have

identical consumption c(µt, yt−1) = cA(µt) for some function cA. Households that choose not to

pay the fixed cost have consumption c(µt, yt−1) = m(µt, yt−1)− a(µt, yt−1).

Next consider a household’s optimal choice of whether to pay the fixed cost to trade given

prices Q(µt), P (µt) and its arbitrary feasible choices of real money holdings in the goods market

m(µt, yt−1), a(µt, yt−1). From Lemma 1, we have the form of the optimal consumption and transfer

rules corresponding to the choices of z = 1 and z = 0. Substituting these rules into (4) and (28)

gives the problem of choosing cA(µt) and z(µt, yt−1) to maximize

∞X
t=1

βt
Z Z

U(cA(µ
t))z(µt, yt−1)g(µt)f(yt−1) dµtdyt−1 +(29)

∞X
t=1

βt
Z Z

U(m(µt, yt−1)− a(µt, yt−1))(1− z(µt, yt−1))g(µt)f(yt−1) dµtdyt−1

subject to the constraint

B̄ ≥
∞X
t=1

Z Z
Q(µt)

h
N(µt, yt−1)−N(µt−1, yt−2)

i
f(yt−1) dµtdyt−1 +(30)

P∞
t=1

R R
Q(µt)P (µt) [cA(µ

t) + γ − (m(µt, yt−1)− a(µt, yt−1))] z(µt, yt−1)f(yt−1) dµtdyt−1.
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Let η denote the Lagrange multiplier on (30), and consider the following variational argu-

ment. For a state (µt, yt−1), the increment to the Lagrangian of setting z(µt, yt−1) = 1 is

βtU(cA(µt))g(µt)f(yt−1) −(31)

ηQ(µt)P (µt)
h
(cA(µ

t) + γ)− (m(µt, yt−1)− a(µt, yt−1))
i
f(yt−1),

which is simply the direct utility gain U(cA(µt)) minus the cost of the required transfers. The

increment to the Lagrangian of setting z(µt, yt−1) = 0 in this state is

βtU((m(µt, yt−1)− a(µt, yt−1)))g(µt)f(yt−1),(32)

which is simply the direct utility gain, since there are no transfers. The first-order condition

with respect to cA is βtU 0(cA(µt))g(µt) = ηQ(µt)P (µt). Subtracting (32) from (31) and using the

first-order condition when z = 1 gives the cutoff rules defined by (8). More formally, we have

Lemma 2. Given active households’ consumption cA(µt), a household chooses z(µt, yt−1) = 0 if

m(µt, yt−1)− a(µt, yt−1) ∈
µ
yL(cA(µt),µt)

µt
,
yH(cA(µt),µt)

µt

¶
and z(µt, yt−1) = 1 otherwise.

These lemmas complete the proof of Proposition 1. To complete our asset pricing formulas,

we need to compute the equilibrium value of the multiplier λ. Given the equilibrium values of

consumption computed in Proposition 1, we have that λ solves

∞X
t=1

Z
βtU 0(cA (µt))

Z yH(µt)

yL(µt)

M(µt)

Y

"
cA (µt) + γ −

y

µt

#
f(y) dyg(µt)dµt =

B̄

λ
.(33)

Households will not want to store cash in the asset market if nominal interest rates are

positive. Thus, to ensure that N = 0, we need only check that nominal interest rates are always

positive. We now turn to the problem of developing conditions sufficient to ensure that households

never want to store cash in the goods market.

Assume that households have constant relative risk aversion utility of the form U(c) =

c1−σ/(1 − σ). Let Q(µt) and P (µt) be the prices constructed above when a and N are assumed

equal to zero.

Consider first the consumption of a household that deviates from the strategy of never

holding cash from one period to the next in the goods market. From Lemmas 1 and 2, we

have that, with a fixed plan {at(µt, yt−1)} for holding cash in the goods market, this deviant
household’s consumption choices are similar to those of a household that does not hold cash in
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the goods market. In particular, in those states of nature in which the deviant chooses to pay the

fixed cost to trade, from Lemma 1, the household’s consumption satisfies the first-order condition

βtU 0(cdA(µ
t))g(µt) = ηdQ(µt)P (µt), where ηd is the Lagrange multiplier on this household’s period

0 budget constraint. Thus, in those states in which the deviant household pays the fixed cost to

trade, it equates its marginal rate of substitution to that of other active households that do not

deviate. Given constant risk aversion, this implies that cdA(µ
t) = θcA(µt) for all µ

t for some fixed

factor of proportionality θ. In those states of nature in which the deviant household does not choose

to pay the fixed cost, its consumption is cd(µt, yt−1) = md(µt, yt−1)− ad(µt, yt−1), and its decision
whether to pay the fixed cost is determined by the cutoffs yL(θcA(µt), µt) and yH(θcA(µt), µt)

described in Lemma 2. Since md(µt, yt−1) = [yt−1 + ad(µt−1, yt−2)]/µt and, in the event that the

deviant household pays the fixed cost, xd(µt, yt−1) = θcA(µt) − [md
t (µ

t, yt−1) − ad(µt, yt−1)], the
factor of proportionality θ (and the implied Lagrange multiplier ηd) that corresponds to any fixed

plan {at(µt, yt−1)} for holding cash in the goods market must be set so that the deviant household’s
period 0 budget constraint holds with equality. The relevant budget constraint is, then, written

as

B̄ =
∞X
t=1

Z Z
Q(µt)P (µt)

h
θcA(µt) + γ − (m(µt, yt−1)− a(µt, yt−1))

i
× z(µt, yt−1)f(yt−1) dµtdyt−1,

where z(µt, yt−1) = 1 if {[yt−1+ad(µt−1, yt−2)]/µt}−ad(µt, yt−1) is in the interval [yL(θcA(µt), µt)/µt,
yH(θcA(µt), µt)/µt] and z(µ

t, yt−1) = 0 otherwise.

Next observe that, since the cutoffs yL(θcA(µt), µt) and yH(θcA(µt), µt) are monotonically

increasing in θ for all values of µt, no deviant household would choose a plan {at(µt, yt−1)} for
holding cash in the goods market such that the implied factor of proportionality θ was so small

that yH(θcA(µt), µt) ≤ yL(cA(µt), µt) for all possible realizations of µt. To see this, observe that the
consumption of such a deviant household would lie below the consumption we have constructed

for a household that never holds cash in the goods market in every possible state of nature µt, yt−1.

Thus, the utility of such a deviant household would have to be lower than that of a household

that never held cash in the goods market. Let θ̄ = sup {θ|yH(θcA(µt), µt) ≤ yL(cA(µt), µt)}.

Lemma 3. It is optimal for a household to never hold over cash in the goods market if, for all

a ≥ 0, µt and θ ≥ θ̄,
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U 0(yH(θcA(µt),µt)
µt

) > β
R
µt+1

R yH(θcA(µt+1),µt+1)−a
yL(θcA(µt+1),µt+1)−a U

0
µ
yt+a
µt+1

¶
f(yt)
µt+1

g(µt+1|µt) dytdµt+1+
β
R
µt+1

U 0(θcA(µt+1))
µt+1

[F (yL(θcA(µt+1), µt+1)−a)+1−F (yH(θcA(µt+1), µt+1)−a)]g(µt+1|µt) dµt+1.

Proof. Given any plan {at(µt, yt−1)} for holding cash in the goods market and an associated value
of θ, the highest consumption that a deviant household could have in period t is yH(θcA(µt), µt)/µt,

and thus, U 0(yH(θcA(µt), µt)/µt) is the smallest marginal utility of consumption it could have in

that period. The terms on the right side of the condition in the lemma are the expected value of

the product of the marginal utility of consumption and the return to holding currency in the goods

market (1/µt+1) in period t+ 1. Thus, the condition in the lemma ensures that such a household

always prefers to consume its real balances in period t rather than carry them over into period

t+ 1 at a rate of return 1/µt+1. Therefore, this condition implies that no plan for holding cash in

the goods market gives higher utility than the plan of never holding cash in the goods market.

Appendix B

In this appendix, we solve for φ when the endowment y is log-normal, with log y having a normal

distribution with mean zero and variance σ2y. The resource constraint is

(cA + γ) [F (log yL, ; 0,σy) + 1− F (log yH ; 0,σy)] +

1

µ̄

1

σy
√
2π

Z log yH

log yL
exp (w) exp

−1
2

Ã
w

σy

!2 dw = expÃσ2y
2

!
,

where F (log yL, ; 0, σy) is the cumulative distribution function (cdf) of a normal mean zero standard

deviation σy evaluated at log yL.We can compute the integral of the resource constraint as follows:

1

µ̄

1

σy
√
2π

Z log yH

log yL
exp (w) exp

−1
2

Ã
w

σy

!2 dw =(34)

1

µ̄
exp

Ã
σ2y
2

!
1

σy
√
2π

Z log yH

log yL
exp

−1
2

Ã
w − σ2y
σy

!2 dw.
Now (33) is the integral of the density of a normal distribution with mean σ2y and variance σ

2
y.

Thus, the resource constraint can be written as

(cA + γ) [F (log yL, ; 0,σy) + 1− F (log yH ; 0,σy)] +(35)
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1

µ̄
exp

Ã
σ2y
2

!h
F (log yH ; σ

2
y, σy)− F (log yL; σ2y, σy)

i
= exp

Ã
σ2y
2

!
.

Given µ, the equilibrium values of cA, yL, and yH are found as the solution to the equations

(5) and (7). We solve these equations numerically for σ = 2, γ = .005, σy = .03, and µ̄ = 1.03.25,

so that annualized inflation is 3 percent. With these parameters φ = 2.14.
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Figure 1 Timing in the Two Markets
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Figure 2 Cutoff Rule Defining Zones of Activity and Inactivity
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Figures 3–4 How Our Model Responds to a Money ShockHow Our Model Responds to a Money Shock

Figure 3 Patterns Implied byPatterns Implied by
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Figure 4 Patterns Implied byPatterns Implied by
a Long-Memory Process

a. Impulse Responses of Short-Term Nominal 
Interest Rates and Money Growth

a. Impulse Responses of Short-Term Nominal 
Interest Rates and Money Growth

b. Interest Rate Yield Curve on Shock’s Impact
and One and Three Quarters Later

b. Interest Rate Yield Curve on Shock’s Impact
and One and Three Quarters Later

−.5
0 5 10 15 20 25 30 35 40

−.4

−.3

−.2

−.1

0

.1

Yield of Maturity of n Quarters

On Impact

3 Quarters Later

1 Quarter Later

−.5
0 1 2 3 4 5 6 7 8 9 10

−.4

−.3

−.2

−.1

0

.1

.2

.3

Quarters

Interest Rate

Money Growth

−1.4
10 2 3 4 5 6 7 8 9 10

−1.2

−1.0

−.8

−.6

−.4

−.2

0

.2

.4

Quarters

Interest Rate

Money Growth

−1.4
0 5 10 15 20 25 30 35 40

−1.2

−.8

−1.0

−.6

−.4

−.2

0

.4

.2

Yield of Maturity of n Quarters

On Impact

3 Quarters Later

1 Quarter Later



Figure 5

Moving-Average Coefficients:
Autoregressive and Long-Memory
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The Model’s Exchange Rate Statistics vs. The Segmentation Parameters Exchange Rate Statistics vs. The Segmentation Parameter
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Figure 7

Relative Volatility of Nominal and Real

Ratio of Standard Deviations of Nominal and Real Exchange Rates
vs. Mean of Log of Consumer Price Index Changes
in 41 Selected Countries, 1970:1–1999:3

Exchange Rates vs. Inflation

Mean of Log of Inflation

Note: The cluster of countries with low relative volatility of nominal and real exchange 
rates and low inflation includes Australia, Austria, Belgium, Canada, Denmark, 
Finland, France, Germany, Greece, Hungary, India, Indonesia, Ireland, Italy, 
Japan, Korea, Malaysia, the Netherlands, New Zealand, Norway, the Philippines, 
Portugal, South Africa, Spain, Sweden, Switzerland, Thailand, and the United 
Kingdom.

Source: International Monetary Fund (International Financial Statistics) 
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Table 1

Exchange Rates in Low Inflation Countries
Quarterly, 1970:1–1999:3

Features of Exchange Rates With the U.S. Dollar

Country

Mean Inflation
(based on a consumer

price index)

Nominal/Real
Volatility

Nominal, Real
Correlation

Persistence:
Real Serial
Correlation

Canada 5.2 .96 .93 .79

France 5.9 1.06 .99 .78

Germany 3.4 1.01 .98 .76

Italy 9.0 1.10 .98 .79

Japan 4.0 1.00 .98 .79

United Kingdom 7.5 1.06 .97 .78

SOURCE.— International Monetary Fund


