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ABSTRACT

We consider an environment in which individuals receive income shocks that are unobserv-
able to others and can privately store resources. We provide a simple characterization of
the efficient allocation in cases in which the rate of return on storage is sufficiently high or,
alternatively, in which the worst possible outcome is sufficiently dire. We show that, unlike in
environments without unobservable storage, the symmetric efficient allocation is decentral-
izable through a competitive asset market in which individuals trade risk-free bonds among
themselves.
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1. Introduction

In this paper, we consider an environment in which individuals have random income,
and can accumulate assets through a storage technology. Their income realizations and
their asset position are private information. Given these informational frictions, we provide
a simple characterization of the efficient allocation in cases in which the rate of return on
storage is sufficiently high or, alternatively, in which the worst possible outcome is sufficiently
dire. We show that the symmetric efficient allocation is decentralizable through a competitive
asset market in which individuals trade risk-free bonds among themselves.

There is a large prior literature which examines the characteristics of efficient risk-
sharing in dynamic settings in the presence of private information.! Unlike our paper, this
literature generally finds that efficient allocations do not coincide with the equilibrium allo-
cations of any economy with a competitive bond market (see Atkeson and Lucas (1992) in
particular). The key difference between our paper and these preceding ones is that the earlier
literature assumes either that agents cannot accumulate resources over time, or that, if they
can, this accumulation is observable. In contrast, we assume that both agents’ incomes and
their stored resources are private information. It is this combination of assumptions that
leads to our result.

Our findings are reminiscent of Allen’s (1985). He considers a dynamic principal-agent
relationship in which the agent is risk averse and has hidden stochastic income. The agent
is able to secretly borrow and lend at the same interest rate that the principal faces. The
ability to secretly borrow and lend means that the agent will, regardless of his true history,
claim to have the history of income realizations that delivers the transfer sequence with the
highest net present value (NPV). Hence, it is not incentive-compatible for the NPV of the
principal’s payments to the agent to depend on the agent’s history of income realizations. It
follows that there is only one incentive-compatible consumption allocation and it is the same
as the one in which the agent borrows and lends on his own without receiving transfers from

the principal.

! Contributions to the literature on hidden income include Townsend (1982), Green (1987), Taub (1990),
Green and Oh (1991), Atkeson and Lucas (1992), Aiyagari and Alvarez (1995), and Wang (1995). Contri-
butions to the literature on hidden effort include Thomas and Worrall (1990), Phelan and Townsend (1991),
Atkeson and Lucas (1995), and Phelan (1995)



In our paper, the agents are allowed to store secretly (essentially, save) at a fixed rate
of return, but not borrow. Because agents cannot borrow secretly, the incentive-constraints
in our setting are looser than the ones in Allen’s model. It is easy to show there is a finite-
dimensional set of incentive-compatible allocations, not just one incentive-compatible alloca-
tion as in Allen’s model. The contribution of our paper is to show that the symmetric efficient
element of this large set of incentive-compatible allocations is, under some conditions, equiv-
alent to an allocation in which agents borrow and lend at a risk-free rate.

For a two-period setting, the intuition behind our results works as follows. (The
extension of the result to a general finite-horizon setting is a somewhat elaborate application
of backwards induction.) For the agents in a two-period version of our model, sequences
of transfers have two key characteristics. The first is the net present value of the transfer
sequence. The second is whether the transfers are relatively high in the first period (front-
loaded), or in the second period (back-loaded). Because of their ability to secretly store,
the agents in our model, ceteris paribus, prefer to have front-loaded transfer sequences; they
can always use their storage technologies to smooth such sequences over time. But their
willingness to substitute NPV for front-loading differs; in particular, agents with temporarily
high incomes have a stronger relative preference for NPV as opposed to front-loading.

Because agents with temporarily high incomes have a stronger preference for NPV, it
is not incentive-compatible for them to receive strictly less NPV than agents with temporarily
low incomes. But, to obtain efficient risk-sharing, the planner wants to deliver more NPV
to the agents with temporarily low incomes. Thus, the dictates of efficiency are in exact
opposition to the dictates of incentive-compatibility. In a Pareto optimal allocation, the
tension between efficient risksharing and incentive-compatibility is resolved by all agents
ending up with the same NPV, and optimally smoothing that NPV over their lifetimes. This
is equivalent to the agents’ borrowing and lending among themselves using risk-free bonds.

Our results provide an explicit microfoundation for the incomplete markets structure
assumed in a number of papers including Lucas (1980); Bewley (1993); Huggett (1993);
Aiyagari (1994); Rios-Rull (1994); Heaton and Lucas (1996); and Gomes, Greenwood, and
Rebelo (1997)]. These papers study incomplete markets models in which a continuum of

agents with idiosyncratic income shocks competitively trade a risk-free bond over time. Our



paper also makes a methodological contribution. Fudenberg, Holmstrom, and Milgrom (1990)
provide characterizations of efficient allocations in a wide class of dynamic environments such
that agents’ preferences over continuation contracts are common knowledge after any history.
Ours is the first paper to our knowledge to provide a characterization of efficient allocations in
an environment in which this property is not satisfied. Technically, the failure of this property
makes our task challenging because efficient contracts are no longer Markov in continuation
utilities.

The plan of the paper is as follows. In section 2 we lay out a finite horizon version
of our environment. In section 3 we characterize efficient allocations. In section 4 we show
that these efficient arrangements can be supported by trade in risk-free bonds. In section 5
we extend our results to versions of our model that include an infinite horizon, diminishing
returns to storage, and lotteries. We also discuss how our main result can be reinterpreted

as applying to an environment with hidden effort. In section 6 we conclude.

2. Environment
There is a continuum of identical agents who each live for T" periods. There is a single
consumption good c¢ in every period. In period n, individual preferences over consumption

streams are representable by the utility function

T
En Z ﬂt_nu(ct)

where we assume that u(-) is C? over (0,00), v’ is positive, u” is negative, and lim,_ou'(c) =
0o. The domain of u is the entire real line; u(c) = —oo for ¢ < 0. We also assume that
u displays nonincreasing absolute risk aversion (NIARA) over ;. This assumption implies
that u' is strictly convex over this region.

In each period, an individual receives a storable unobservable stochastic endowment.
We denote the realization of the endowment good in period t by #;, and we assume that it
has finite support Y = {y,...,ys} of nonnegative reals, where y; < y;41. We assume that
endowments are i.i.d. both across individuals and across time, and we denote the probability
of an individual receiving endowment y; by 7(y;) > 0. We assume that the gross return on

storage of the endowment good is R > 0 and that individuals can store goods in a private



storage unit that is unobservable to others or in a public storage facility that is observable to
all. As we shall see, the ability to store publicly does not improve societal welfare, but allowing
for this possibility does make proving our results somewhat easier. While we generally restrict
attention to the case where initial storage is zero, we later discuss how our results readily
extended to the case where initial storage is positive.

This simple structure, with the exception of our finite-horizon assumption, corresponds
to our notion of the classic dynamic income insurance structure with capital and growth. The
specification of income shocks is what Green (1987) originally assumed. Unlike Green, we
do not assume exponential utility with an unbounded consumption space, but instead use a
preference class that nests power utility [as in Atkeson and Lucas (1992)] and assume that
consumption is bounded from below. (Our results would extend to an environment with
exponential utility and individual consumption sets that are unbounded from below.) Our
storage technology is exactly the linear production structure that is assumed in much of
the endogenous growth literature.? We assume a finite horizon so that we can exposit our
main ideas simply. In Section 5, we consider a number of extensions to our basic framework,
including allowing the horizon to be infinite and allowing for a concave aggregate production
function.

We use the following notation. We denote the history of shocks through period ¢ by
0" =1{01,...,0,}.

We denote the probability of a history 6 by

t

m(0") = H 7(0,).

n=1

We denote the set of possible histories in period n, given §' where n > ¢, by
Y0 = {6} x Y™ L

Given a history 6" = (61, ...,0;) of shocks realized through period ¢, we denote by "(6") =
(61,05, ..., 0,,) the subhistory realized through period n < ¢, and we denote by 6,,(6") the shock

in period n <t implied by the history.

2See, for example, Jones and Manuelli (1990) and Rebelo (1991).
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In this setting, an allocation is a vector (cy, s, T4, S;)i_;, where

¢ YR
sp 1 YRy
.+ YIS R
Sy € R

Here, ¢;(#") is the consumption of an individual who has history ' € Y*, s;(6") is that in-
dividual’s nonnegative private storage level, and 7,(") is the transfer of consumption that
the individual receives (note that it can be negative). S; is the level of public storage un-
dertaken by the society. Note that our notion of allocation immediately assumes that agents
can only be distinguished through their histories. (Formally, an individual with history 6"
has endowment 6,(6") and private savings level s,_;(8**(6")) in period t; however, as long as
no ambiguity is created by doing so, we will denote these values by 6; and s,_; (6" ').)

An allocation is feasible if:
(1) V(t, Qt), Ct(et) + St(Qt) S RStfl(et_l) + Tt(Qt) + 9t,

(2) Wt Si+ > w(0)r(60') < RSy,

oteyt
Vi, S, > 0
So = O, Sp = 0.

Since both income realizations and private storage are unobservable, individuals can
deviate from allocations in two ways. First, individuals can pretend to have different income
histories, and thereby receive the transfer payments associated with that history. Second,
individuals can choose different levels of storage. Let ¥ be the set of reporting and storage

strategies (0y, ;)L ,, where:

?0} - Yi S Y
/S\t . Yt_>§}E+



Let 6 denote the truth-telling strategy in which 6,(6") = 0, for all (¢, 6").

Given a transfer allocation 7, an individual receives (ex-ante) utility V' (6,5s;7) from

following reporting strategy 0 and storage strategy s, where:

V(6,5 7) }:E:ﬂww (6, + R5,_1 (0"1) + 7,(6,(6Y)) — 5,(6"))

t=1 gtey?
given 5y = 0.

We say that an allocation (¢, s, T, S) is incentive-compatible if:

o~

(3) V(0,s;7) > max V(0,5;71).

0,5)ex

An allocation that is both incentive-compatible and feasible is said to be incentive-feasible.?

3. Efficient Allocations
Our goal in this paper is to characterize the efficient incentive-feasible allocations in
this environment. Since all individuals are ex ante identical and we are restricting ourselves

to symmetric allocations, these allocations will be the solution to the following problem:

P1 : maXZZﬂt19t ct(0))

(¢,s,7,5)
t=1 gtcyt

subject to

V(,s7)>V(0,57)V(0,5) €%
Wuwxqw6+&ww:R&4w“U+nw6+m

Vi, Sﬁz (6 < RS, ,
otcyt

Y(t, 0", 5:(0"),S; >0
SOZO,SOZO

In this problem, the first constraint requires that allocations be incentive-compatible; the
other three constraints requires that the allocation be feasible. Clearly, there exists a solution

to P1, because the constraint set is compact and the objective function is continuous.

3Tt is straightforward to show that an allocation is incentive-compatible (as defined here) if and only if
it is the Nash equilibrium outcome of some anonymous mechanism. See Cole and Kocherlakota (1998) for
further details.



Because private storage and public storage have the same rate of return, there is no
loss to having the planner do all of the storage publicly. This logic gives rise to the following
proposition, which helps simplify problem P1.

PROPOSITION 1. Given any incentive-feasible allocation (c, s, T,S), there exists another incentive-

feasible allocation (¢,0,7',5").

Proof. Define 7,(6") = 7,(6") — 5,(6") + Rs;1(6"") and S} = >, w(6")s,(6") + S;. We
claim (¢,0,7',.5) is incentive-feasible. The feasibility is obvious. Suppose (¢, 0,7’,.5") is not

incentive-compatible, and there exists (5, 5) such that:
(4) V(0,57 > V(6,0;7)

But then define the storage strategy: s!(6') = st(GAt (0")) + 35:(6") and note that (4) implies
that V(b\, s*;7) > V(0, s;7), which contradicts the incentive-compatibility of (¢, s, 7,S). O

A. Characterizing Efficient Allocations
In this section, we establish our main characterization of efficient allocations. It con-
sists of two conditions on consumption allocations. A consumption allocation ¢ satisfies the

consumption smoothing condition if:

(5) Vt < T and 6" :
( =R Z 0t+1 Ct+1 (9 9t+1))

9,54,_1 cYy

A consumption allocation c satisfies the net present value (NPV) condition if:

(6) VO, RH(0,(67) — cr(6'(67))) =0

t=1
Under this condition, the NPV of transfers, along any history 67, is equal to zero since
So = so = 0. (Here and throughout the rest of the paper, the NPV of a transfer scheme is
potentially stochastic, because it refers to the NPV of transfers along a given history.)
These two conditions would emerge from an environment in which individuals were

choosing their consumption optimally given that they could only save and borrow at rate R.



In the appendix, we demonstrate that there is a unique consumption allocation that satisfies
the NPV and consumption-smoothing conditions (see section Al).

NOTATION: The symbol c* refers to the unique consumption allocation that satisfies
consumption smoothing (5) and the NPV property (6).

We define ¢* to be feasible if there exists some feasible allocation (c¢*,s,7,S5). It is
possible that ¢* is not feasible, because it may imply that aggregate storage is negative in

some date. In particular, it is straightforward to show that ¢* is feasible if and only if:

(1) v S ) YD R 60) — 6°(6) 2 0

oreyt
Later, we provide sufficient conditions on the exogenous parameters (3, u,y, 7) such that ¢*
is feasible.

The main proposition that we prove in this section is:

If ¢* is feasible, then an incentive-feasible allocation (c,s,T,S) is efficient (solves P1)
if and only if ¢ = c*.

We prove this proposition using the following line of logic. First, we define P2, a pro-
gramming problem with the same objective but a larger constraint set. Second, we demon-
strate that an allocation solves P2 if and only if the consumption allocation ¢ = ¢*. Third, we
establish that ¢* is incentive-feasible for P1 if ¢* satisfies our nonnegative condition (7). Hence,
it follows that if this condition is satisfied, ¢ = ¢* in any solution to P1. (The reason for the
potential multiplicity of solutions to P1 is that there will typically be many incentive-feasible
allocations which differ solely in their division of savings between that which is privately

observable and that which is publicly observable.)

B. The Relaxed Problem and Its Solution
To define the relaxed problem P2, consider the following subset ¥ of the set of all

reporting and storage strategies . A strategy (5, S) is an element of X if:

1L (VE<T, V6, j=2,...0), 0,0 ;) € {y;,yj—1}
0,0 ;) = yj_1 or 3,(0Y) #£ 0= 0,(0°",y;,6") =0, Vt <n < T,
2. (Vt < Tv vgtil)v /ét(etila yl) =Y,



3(¢, 0, 5(0") > 0.

The first restriction states that, in periods t < T, agents can either tell the truth or lie
downwards by one notch in the grid of possible income realizations, and if an agent ever lies
or stores, he must thereafter tell the truth. The second restriction says that if an agent has
the lowest possible income realization, he can only tell the truth. There is no restriction on
possible storage strategies beyond nonnegativity.

Given this definition of Y, the relaxed problem P2 is constructed from P1 in three
ways. First, we require private storage levels to be zero; from Proposition 1, we know that this
does not affect the maximized value of the objective. Second, we allow S; to be nonnegative
for t < T. Finally, we require agent strategies to lie in Yg; restricting the set of possible

deviations from a given allocation expands the set of allocations that lie in the constraint set.

maxZZﬁ“ (0" (e, (6Y))

(¢,s,7,5)
t=1 gteyt

subject to

V(0,0;7) > max V(@,/s\; )

(0,5)€XR

V(t, Qt)7 ct(Gt) = Tt(gt) + Gt
Vt, Si+ > w(0)7(0") < RS-y

otcyt

Note that by construction, if (¢, 0,7, S) solves P2, and (c,0,7,.S) is incentive-feasible,
then (¢, 0,7, S) solves P1. Clearly, there exists a solution to P2, because the constraint set is
bounded and closed, and the objective function is continuous.

We now show that if an allocation (¢, 0, 7, .S) solves P2, ¢ must satisfy the consumption-

smoothing and NPV conditions.

PROPOSITION 2. Let:

T (07) = ¢ (0) — 0.(0")



Sr=— ) w(0)) R (07(6Y)

fteyt n=1
The allocation (c*,0,7*,S*) is the unique solution to P2.

Proof. See the appendix.

We prove this proposition by showing that if (¢,0,7,S) solves P2, then c satisfies the
consumption-smoothing condition (5) and the NPV condition (6). We do so using backwards
induction. It is straightforward to show that if (¢, 0, 7, .5) satisfies the incentive constraints in
P2, then it satisfies the consumption-smoothing and NPV conditions in period 7. Then, we
assume that an optimal (c, 0, 7, .S) satisfies the consumption-smoothing and NPV conditions
from period ¢ onwards*, and use this assumption to prove that the two conditions must also
hold in period (¢ — 1).

The proof of consumption-smoothing in period (¢ — 1) is as follows. First, individuals

can only be borrowing constrained,
u'(c(0")) > BREpu (cen (071)),

and not savings-constrained, where the inequality is reversed, since they can always privately
store. Given this fact, we construct a better allocation by having the planner “borrow” at
rate R (reduce S;) and then offer a loan to the constrained individual at his shadow interest
rate. The shadow rate is higher than R, because the individual is borrowing-constrained, and
so this generates extra resources for the planner. Because deviant strategies are restricted to
lie in X, deviant individuals can only have more resources in the current period. We prove
that because they have a lower shadow interest rate, such individuals are made worse off by
the planner’s loan.

Proving that the solution satisfies the NPV condition in period (¢t — 1) is more chal-
lenging. We note first that, given consumption-smoothing, any transfer scheme that gives
an individual with a lower endowment shock a higher NPV sequence of transfers must lie
outside the constraint set of P2 (because individuals with a high endowment shock will lie

downward to get the high NPV transfer sequence). Then we show that if the NPV of the

4 An allocation satisfies the NPV condition from period ¢ onwards if Zzzt RY"(0,,—c, (™)) is independent
of (6y,...,07).
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transfer to an individual with a higher endowment shock is also higher, then the planner
should shift resources from the agents with high realizations to those with low realizations.
Because of risk aversion, this transfer uses fewer total resources but keeps ex ante utility the
same. Finally, we prove that this change in plan reduces the welfare of deviant individuals.

As it turns out, this is a direct consequence of NTARA.

C. Equivalence of P2 and P1

We have established a simple characterization of the solution to the relaxed problem
P2: In any solution to P2, the consumption allocation equals c¢*. This means that the agents
receive the same NPV, regardless of what they report, and telling the truth is weakly optimal,
because the planner optimally smooths a truth-telling agent’s consumption stream. It follows
that any solution to P2 is incentive-compatible. The only possible reason that a solution to
P2 might not be incentive-feasible is that ¢* might not be feasible.

This logic is the basis for the following proposition.

PROPOSITION 3. If ¢* is feasible, then an incentive-feasible allocation (c,s,T,S) is efficient

(solves P1) if and only if ¢ = ¢*.

Proof. See the appendix.

Note that the potential infeasibility of a solution to P2 only arises because we assume
that our economy is closed. If we were to instead follow Green (1987) and assume that the
basic environment was a small open economy, with the world interest rate equal to the net
return on storage, then ¢* would automatically be feasible. It would follow from Proposition 3
that the consumption allocation in the solution set to P2 is also the allocation of consumption
in the solution set to the small open economy version of P1.

There is only one solution (c¢*,0,7*,5*) to P2. Proposition 1 guarantees that if ¢* is
feasible, then (c*,0,7*, S*) solves P1. However, there are many solutions to P1, because the
aggregate storage can be split arbitrarily between public and private storage. Thus, there are
many incentive-feasible allocations (c¢*, s, 7,.S), and they all solve P1.

The above characterization of efficiency applies only to environments in which the
consumption allocation c¢* is feasible. The following proposition makes clear that there is a

non-empty set of such environments.
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PROPOSITION 4. The consumption allocation c¢* is feasible if either of the following two con-

ditions is satisfied:

(i) R>p
(ii.) y1 = 0.
Proof. See the appendix.

The proof for condition (i) works off the fact that if marginal utility is convex, then
consumption smoothing implies that average consumption must be growing. The proof for
condition (ii) is a direct consequence of the Inada condition on marginal utility and the NPV
condition on transfers. If ¢* is infeasible, then some individual must have consumed more
than his income in terms of NPV over the past t periods. This means that the NPV of his
future transfers must be negative, regardless of what endowments are actually realized. But
this is impossible, because with positive probability, the individuals receive zero income in
every future period.

Proposition 4 only establishes that a nonempty set of environments exists in which c*
is feasible. When we use the theorem of the maximum, it is easy to see that for all u, Y, and 7,
there exists some 3* < R~! such that c* is feasible when 3 > 5*. Similarly, for all u, 7, 3, and
{y2, ..., ys}, there exists y; > 0 such that if y; > 7}, then ¢* is feasible. More generally, the
key requirement to guaranteeing the feasibility of ¢* is that individuals need to be sufficiently
willing to exchange current consumption for future consumption. This requirement can be
generated in two ways: returns on storage that are close to the inverse of the discount factor
or risky income streams that give rise to a significant precautionary savings demand.

In interpreting Proposition 4, it is worth noticing that the relationship between output
and storage in our model is the same linear production technology assumed in much of the
endogenous growth literature. If we relabel storage as capital, then it would seem only natural
to assume that the return on capital, R, was in fact higher than 5! to ensure the capital stock
growth without bound in equilibrium, regardless of the exogenously specified distribution of

icome.
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4. Supporting the Efficient Arrangement

We now consider the equilibrium outcomes of a dynamic incomplete markets economy
embedded in our physical and informational environment. In this trading arrangement, indi-
viduals competitively trade consumption and risk-free one-period bonds that are available in
zero net supply in each period. There is complete enforcement in this economy: individuals
must pay off their debts in every state of the world, and they cannot end their lives in debt.
We show if ¢* is feasible, the efficient consumption allocation ¢* is an equilibrium consump-
tion allocation in the incomplete markets economy. Further, we prove that if there is an
equilibrium in the incomplete markets economy such that the rate of return on bonds is in
every period equal to the net rate of return on storage, then the allocation of consumption in
that equilibrium is ¢*. Finally, we show that if the equilibrium interest rate is in any period
less than (R — 1), then the equilibrium allocation of consumption is inefficient.

The dynamic incomplete markets economy takes the following form. In each period,
individuals trade consumption in exchange for risk-free bonds that promise one unit of con-
sumption next period. The individuals treat interest rates (that is, the relative price between
bonds and consumption in each period) as given. Individuals derive wealth in a given period
from storage, from the interest payments on their bonds, and from their income. Individuals
can use their wealth in three ways: they can store it, they can consume it, or they can use it
to buy and sell bonds.

Hence, individuals choose consumption, bond holdings, and storage {c, b, st}thl ,
where each of the components of this vector is a function mapping Y into the reals. Treating
the interest rate sequence {r;} as fixed, the individuals make these choices so as to solve the

following problem:

T
(8) maxFk Zﬂtu(ct)
t=1
subject to
ct + bt + S¢ S (975 + bt—l(l + 7”75) + RSt_l
br >0
St Z 0

13



bOZO,SOZO

An equilibrium in this economy is a sequence of interest rates {r;} and a solution

{et, by, st}le to the individual’s decision problem such that for t =1, ..., T,

(9) E{b} =0

(10) E{c,} + E{s;} = RE{s; 1}

where E represents the unconditional expectation of the random variable. Equation (9)
requires that per capita bond holdings equal zero, and equation (10) requires that per capita
demand and per capita supply are equated in the goods market.

Given this definition of equilibrium, we can prove the following proposition.

PROPOSITION 5. If ¢* is feasible, then the efficient consumption allocation c¢* is a dynamic
incomplete markets equilibrium allocation of consumption. In that equilibrium, (14 1) = R
for all t. Conversely, if (1 + 1) = R for all t in a dynamic incomplete markets equilibrium,

then the equilibrium allocation of consumption equals c*, and so is efficient.

Proof. See the appendix.

The first statement of Proposition 5 follows directly from the characterization of effi-
ciency in Proposition 2, while the second statement follows from the observation that because
(14 7) = R, the dynamic incomplete markets equilibrium allocation implies a transfer func-
tion that satisfies the consumption smoothing and NPV conditions.

Note that in the dynamic incomplete markets economy, storage could be public or
private. Hence, when the efficient consumption allocation and the competitive equilibrium
consumption allocation are the same, there is a solution to P1 with the same consumption
allocation and only private storage. It follows that Proposition 5 also applies to an environ-
ment with no public storage. Note also that if storage was positive in each period ¢ < T', then
this would imply that (1 + ;) = R.

The following proposition proves that if the society faces a binding nonnegativity

constraint on storage, then the equilibrium allocation is inefficient.
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PROPOSITION 6. If in a dynamic incomplete markets equilibrium (1 + ry) < R for some t,

then the equilibrium allocation is inefficient.

Proof. See the appendix.

The proposition follows from the fact that when there is a gap between the equilibrium
interest rate and the return on storage, then the planner can, in the efficient allocation, tax
the high income individuals for the right to save and transfer these proceeds to the low income

individuals in such a way as to raise ex ante welfare.

5. Extensions and Generalizations

In this section, we generalize our results along several dimensions. First, we show
that in an infinite-horizon version of the above economy, if there exists some consumption
allocation c¢* that is feasible and satisfies both the NPV and consumption-smoothing condi-
tions, then any incentive-feasible allocation (c*, s, 7,S) is efficient. This guarantees that if
(14 r;) = R in a competitive equilibrium in the dynamic incomplete markets economy, then
the equilibrium allocation is efficient. Next, we consider two variants of our model for which
our results continue to apply: a hidden action version with an underground sector and a ver-
sion in which the aggregate storage technology is concave. Next, we consider the robustness
of our results to allowing society to use lotteries in the allocation of resources. Finally, we

consider allowing for positive initial storage levels.

A. Infinite Horizon

For this subsection, we let T' = oo. We also add the assumptions that u is bounded
from above and below, R > 1, and y; > 0. We impose these assumptions only because
they are sufficient (albeit overly strong) to guarantee that there is some c¢* that satisfies
the consumption-smoothing and NPV conditions [Sotomayor (1984)]. We define an infinite

horizon analog of P2 by changing the terminal condition on S to be:

lim RISy >0

T—o00

and setting the terminal date 7" equal to infinity elsewhere in the problem.

We can then prove the following extension of our previous results.
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PROPOSITION 7. Let:

(07 = (0) — 0.(6")

Spo= = w0 R 0m(0")

otecyt n=1
The allocation (c¢*,0,7*,5*) solves P2.

Proof. See the appendix.

A simple corollary to Proposition 7 is that if ¢* is feasible, then any incentive-feasible
allocation (c*,s,7,S) is efficient. Using the proof of Proposition 5, we can then show that
if in a dynamic incomplete markets competitive equilibrium (1 + r;) = R for all ¢, then the

equilibrium allocation is ¢*, and so is efficient.

B. Hidden Actions: A Reinterpretation

In the environment discussed in the body of the paper, individual income is unobserv-
able. To what extent does our main decentralization result carry over to environments in
which the outcomes of at least some economic activities are observable, but the inputs are
not? To address this question, we consider a simple variant of the model in which there are
two sectors: one in which output is observable and one in which it is not. We assume that
labor effort and productivity are unobservable in both sectors. We can interpret the observ-
able sector as legal market production and the unobservable sector as either the underground
economy or home production.

An example of the sort of model that we have in mind is as follows. Assume that
individuals are endowed with a unit of time in each period that they can allocate to either of
two sectors. Let [; denote an individual’s labor effort in the legal sector in period ¢t and 1 — I,
be the amount allocated to the unobserved sector. Let z; denote an individual’s productivity
in period ¢. This level of productivity is the same in each of the two sectors. Individuals’
output in the observable sector is given by z;/; in period ¢ and in the unobservable sector by
2¢(1 —1;). We assume that the distribution of z, is the same as 6; in our unobservable-income
model. In this model, adjusting [; works exactly like lying about the size of one’s income

shock. Furthermore, the efficient transfer scheme and the consumption allocation are exactly
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the same as in the original environment.

The extension to a hidden action model reinforces the point that expanding the space
of unobservable activities individuals can undertake may reduce the complexity of efficient
allocations, thereby allowing for more appealing decentralizations. Note that even though
these additional hidden activities make the optimal arrangement simpler (and arguably more
realistic), they nonetheless make individuals worse off ex ante (as long as the new hidden

activities are not more productive than those available publicly).

C. Diminishing Marginal Returns to Storage

Assume, as in Aiyagari (1994), that the return to total storage at the aggregate level
is given by the concave, continuous, and nonnegative function R(-), where R(0) = 0 and
R'(0) = oo. Assume that individuals can add private storage to the public amount and
withdraw its proceeds without being detected.

If S, denotes the total level of private storage, then the per unit return in period t + 1
on storing S, in period t is [R(S; + S;) — R(S,)]/S;. We can show that given any feasible
allocation, there is an equivalent zero private storage allocation, just as we did in Proposition
1. Given this, we can once again restrict attention to zero private storage allocation, and
because individuals are infinitesimal, the per unit return on any individual who deviates and
stores a positive amount is simply R/(S;). We can then use this ability of the individual
to store linearly at the same marginal rate as the planner to show, by essentially the same
arguments we used in the proof of Proposition 2, that the solution to P2 will still satisfy
our consumption smoothing condition and that the NPV of transfers is independent of an
individual’s reports. However, the NPV will not be zero, because the production technology
exhibits decreasing returns to scale, and, hence, there will be positive profits associated with
it. We can still establish that the solution to P2 is a solution to P1 by the same argument as
before. Furthermore, any solution to P2 will exhibit nonnegative storage.

The solution to P2 can be decentralized if we assume that a price-taking firm operates
the aggregate storage technology and that, at date 0, the claims to the profits of the firm
are distributed equally. Since in any competitive equilibrium the interest rate will satisfy

re = R'(S;) — 1, the associated allocation is efficient.
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D. Lotteries

We have thus far restricted ourselves to deterministic allocations, but this restriction
is innocuous in our environment. Lotteries can potentially allow the planner to screen on the
basis of risk, thereby achieving better outcomes. [See Cole (1989).] However, it is easy to
show that our assumption that preferences exhibit NTARA implies that there is no gain from
lotteries in this environment. The proof is similar to that of the NPV property in Proposition
2. To see this, note that if in period T, some type #7 ! was receiving a random transfer,
we could reduce the expected transfer while keeping this type’s ex ante utility the same. By
the same logic we used in the proof of Proposition 2, we can use our assumption of NIARA
to prove that this would lower Ep_ju/(cy) for this type, and, hence, no one would want to
deviate under these new transfers if he didn’t under the original transfers. We can then
extend the result to previous periods by backward induction, just as we did in the proof.

Finally, lotteries do not allow us to obtain a simple decentralization where we otherwise
could not. Prescott and Townsend (1984) propose a decentralization of environments with
private information. However, in the environment considered by Green (1987), as well as in
our environment with hidden income and hidden storage, Prescott and Townsend’s (1984)
decentralization simply assumes that there are competing firms who offer insurance contracts
as of time zero, and the individuals can choose among the contracts. Hence, Prescott and
Townsend’s (1984) decentralization also cannot allow for trade in the sort of simple assets

assumed in the incomplete markets literature.

E. Nonzero Initial Storage

We can easily allow for Sy > 0. This would change our NPV condition to be a re-
quirement that since the NPVs of the transfer all have to be equal, they have to equal the
per capital level of initial public storage. Having positive initial public storage would expand
the set of returns on storage R and distributions of income Y for which our results would
go through. It would also enable us to relax the assumption that y; > 0 in proposition 7,
since what we need is either y; > 0 or Sy > 0 in order to ensure that the marginal value of
additional resources is finite in period 1. Finally, note that there is no distinction between

positive initial public storage and positive initial private storage if these levels are common
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knowledge.

6. Conclusion

We consider an environment in which individuals have idiosyncratic income shocks. In
this economy, there is a unique consumption allocation such that consumption is smoothed
over time and the NPV of transfers received by individuals is independent of the shocks
they experience. The main result in this paper is that if this unique allocation is physically
feasible, then it is the only efficient allocation of consumption.

We use this characterization to show that the symmetric efficient allocation is decen-
tralizable through a dynamic incomplete markets trading arrangement, in which individuals
competitively trade risk-free bonds among themselves and face infinite costs of dying in debt.
Thus, apparently ad hoc restrictions on the securities available for trade are consistent with
the implementation of the efficient allocation in this setting.’

Our results are robust to several natural extensions of our basic model. If we simply
reinterpret our environment as being a small open economy and assume that the exogenous
world rate is equal to the return to storage, then the nonnegative storage condition is removed,
and our results will hold for any nondegenerate income distribution. Our extension to a
concave production technology makes clear that the assumption of a linear storage technology
is made for expositional ease. Furthermore, as long as the marginal return to storage is
high relative to the discount factor for low storage levels, our results will again hold for
any nondegenerate income distribution. This assumption is satisfied by virtually all the
production structures assumed in aggregate models.

Our results do, of course, depend on existence of hidden storage or hidden investment
opportunities. However, this feature of the model seems easy to rationalize. Throughout
history, people have hidden wealth using grain, gold, and jewelry, as well as foreign bank
accounts, currency, and hard to observe assets within a business. Our results also depend

upon the rate of return on hidden and public storage being equal. However, one can show

5Kehoe and Levine (1993) and Alvarez and Jermann (1997) discuss ways to decentralize efficient allocations
in environments with enforcement frictions. These decentralizations require a complete set of securities
combined with borrowing constraints. Hence, while enforcement frictions can explain limited risk-sharing,
they cannot rationalize the elimination of income-contingent securities.

19



that if the rate of return on private storage is not that different from that on public storage,

simple debt contracts provide a good approximation to the efficient allocations.
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Appendix

In proving the various results, it will prove convenient to define the payoff to a finite

horizon savings problem. Let U(A,t) be defined as the solution to
T

Al) P3:U(A,t) =maxFE (e, (0™))]61
(A1) P3040 = B 7 ulea )10
subject to

T

VOT, Y R (0,(07) — ca(07(67))) < A
t=n

The function U represents the maximal ex-ante utility that is feasible given that the agent is
endowed with A units of initial wealth, has T'—t + 1 periods remaining, and is free to borrow
and lend, subject to the constraint that he cannot die in debt, regardless of what sequence
of shocks afflicts him. Note that U is increasing, is concave, and exhibits NTARA [Neave
(1971)].

In what follows, we use the notation P3(A,t) to refer to the problem P3 with initial
wealth A in period t.

A1l. Proof that ¢* is unique

The problem P3(A,t) defined in (A1) has a compact constraint set and a continuous
objective function, it has a solution. Since the constraint set is convex and the objective
function is strictly concave, it has a unique solution. And, furthermore, the first order
conditions to this problem are both necessary and sufficient. Finally, note that for P3(0, 1),

the first order conditions consist of (5) and (6). Hence, ¢* is unique.

A2. Proof of Proposition 2
Before proving Proposition 2, we will find it useful to prove the following lemma about

savings problems. To set up the lemma, let €, > 0 satisfy ¢ — 6/ R < 0. Then, define:

Zy) = rggagcu(y — )+ BEv(z + Rs),

W(y) = m%(u(y —s+¢e)+ PEv(z+ Rs —0),

where v is a strictly concave function and z is random second period income.
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Lemma 1. If Z(y,) = W(y,), and y > ya, then Z(y,) > W(y,).

Proof. The proof is by contradiction. Define s,(y) and s,(y) to be the unique
maximizers of the savings problems Z and W respectively. Standard arguments imply that
they are weakly increasing.

Suppose that W(y,) > Z(y,). Then by the Mean Value Theorem, there exists y. €
(Yas Yp) such that W’ (y.) > Z'(y.). This implies that:

u/(yc +e— Sw(yc)) > Ul(yc - Sv(yc))'

The concavity of u implies that

0 S Sv(yc) S Sw(yc) —E.

The weak monotonicity of s,, implies that s, (yp) > S (y.). But then we know that

Z(y) = uly +€ = suwlyp)) + BEv(2 + Rsw(ys) — eR)

> u(yp + € — Sw(tp)) + BEv(2 + Rsw(ys) — 0)
= W),

which is a contradiction. [

Proof of Proposition 2. First, we prove that if (¢, 0, 7,.5) solves P2, then:

> (07 (0") + Sy = RS,y for all t

oreyt
We do so by contradiction.

Suppose instead that this aggregate resource constraint does not hold with equality in
period t. The planner should store the additional resources until period 7" and give them to
any individual who announces that he received the highest realization of the endowment good,
Yy, in periods 1 through 7'— 1. By the nature of the incentive constraints, no agent is allowed
to claim that he got the highest shock if he did not; therefore, the incentive constraints can’t
be violated. Also, giving more consumption to agents in period 7" will not lead them to save

more.
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We next prove that for all ¢, the following is true of a solution (¢, 0,7, S) to P2:

(A2) 34, Y = R st
T
A0 =D 70707 )R
n=t

(ca(0™)E, sglves P3(A;(0"1),1)

Here, the notation 0} | = (04, 6;,1, ...,0,). Note that if (A2) is true for t = 1, then ¢ = ¢*.
We prove (A2) by backwards induction. Note first that it is true for ¢ = 7. The
incentive constraints imply that for ¢ = T, 77(07) is independent of 67. Also, cr(07) =
77(07) + 07, and so it is trivially true that cp(67) solves P3(rp(67),T).
Next, we make the inductive assumption that (A2) is valid for some ¢. Given this
assumption, we prove that for all 0" ', u/(c,_1(0°")) = BRY oy m(O)/ (ct(6",6;)). The
proof is by contradiction. Suppose that for some 0"

(A3) w(c1(8'7) > BRY m(0)u'(c(6',0)).

ocy

(The reverse inequality is obviously inconsistent with the incentive constraints of P2.)
By the inductive assumption, the continuation payoff from period ¢ onwards is given
by U(Ay(6"1),t), where U is defined in (A1) and A;(#" ') is defined in (A2). Set S, ; =

), 7107 = 7,1(0" )+ e, and set {7,(6 ", 607" ,)}7_,, and 6 so that

Sy 1— em(0

w(err (85 +€) + U (At(é“) _6, t)
— w(ea (87N + gU (At(a“),t) ,

w(e (07" + ) = AU (A8 = 5,1).
and
{6, + 7(0",67 )}, is a solution to P3(A,(6 ") — 6,1).

By the envelope condition, u’(ct_l(étfl)) > BRY ey u’(ct(étfl, 0)) implies that 6 > ¢R, and
so this reshuffling is physically feasible and can be used to improve ex ante utility.
We still have to check the incentive constraints. To do so we want to show that the

continuation payoff under 7, conditional on reporting ét_l, is weakly less than 7 for any (/9\, 5) €
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g If Gt,l(thl) =0, 1 and §t,1(@t_1) = 0, then the continuation payoff from deviating under
7 is the same as under 7. Hence the only relevant deviations involve Gt_l(ét_l) > 6;_, and/or
§t_1(9t71) > 0. Then, if we set y, = 0;_1, yp = O4_1 + 541, 2 = 0, + Rst_l(étfl) + A (0"71))
and v = U, we can apply Lemma 1 to argue that if 6, | +s, 1 > 0, 1, the continuation payoff
from deviating is less under 7 then under 7.

Thus, if (c,0,7,5) satisfies the inductive assumption and (A3), there exists (¢, 0,7, 5)
that satisfies the constraints of P2 and increases the objective over (c, 0,7, S). It follows that
the inductive assumption and the optimality of (¢, 0,7, S) implies that:

W (ca(01) = BRY w(0)u/ (ci(6" 1, 6))
5%
for all 4"

Next, we want to show that if consumption smoothing holds from period ¢ —1 to period
t, then this implies that 7, (0" ) + R7*A4,(#" ') is independent of 6§, ;. Define W;(¢" ?) =
7o 1(0" 2 y;) + R~ A (0" 2, y;), which only depends only on 6" % and the current report ;.
We want to show that W; = W;_; for all j =2, ..., J, and hence is independent of j.

Suppose that in a solution to P2, there exists 6" and j > 1 such that W}-(@tﬂ) <
Wi1(0

t_z). Consider an agent with actual history (9t_2,yj) who reports (@t_z,yj,l). This

agent’s nonnegative storage constraint does not bind in any future period, because an agent
with lower income y;_; did not have a binding nonnegative storage constraint in the future.

Hence, the lying agent receives continuation utility
BW,_1(8" %) + ;) = max w(W;_1(8" %) +y; — s) + BU(Rs, t).

(Note that U(W,t) in P3 is the ex ante version of B, and that similarly B is increasing, is
concave, and exhibits NTARA [Neave (1971)].) It follows that W}-(@FZ) < W'j_l(@tﬂ) violates
the incentive constraints in problem P2.

Now suppose that for some 0% and 7,
Wi(07) > W; (7).

We claim that this cannot happen in a solution to P2, because there is a new transfer scheme

that achieves the same ex ante utility by using fewer resources. Define W to be the wealth
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level such that:

B(Wee +y;)7(y;) + BWeg + yj-1)m(yj-1)
= [BW;(0") +yp)mly;) + BW;1(0'") + yjo1)m(yj—1)]

Now, change the transfer scheme so that agents who announce (8" 2, y;) or (6 2 y; 1) receive
continuation utility B(Weg+y;) or B(Weg+y,-1) respectively. Clearly, this new mechanism
frees up resources for the planner because of the concavity of B. Agent j will not lie under the
new mechanism. Agent (j + 1) will not lie, because the mechanism makes agent j’s scheme
less attractive.

We still need to check the incentive constraints from the previous periods. To do this,
we need to show that the new mechanism does not increase the period (¢t — 1) continuation
utility of any agent who has reported 6'? and has stored S (instead of 0). The change in this

agent’s period (¢ — 1) continuation utility is given by:

A(S) = BWogr+y;+ S)m(y;) + 7(yj—1)B(Wor + yj—1 + S)

—B(W;(8"*) +y; + S)m(y;) — m(y;-1) BOV;1 (8" %) + 51 + 5)
We know that A(0) = 0. The derivative of A with respect to S is:

A/(S) = B/(WCE +y; + S)W(yj) + W(yj—l)B,(WCE + Y1+ S)
—B'(W;(0'%) +y; + S)m(y;) — m(yj—1) B' (Wj—1 (0"°) + yj—1 + S)
= B"(X;)m(y;)(Wep — W;(0%))

+B"(X; ) (y; 1) (Wep — Wy 1(8°7))

where Xj S (WCE +y; + S, Wj(ét_Q) +y; + S) and Xj_l S (Wj_l(ét_Q) +yi—1+ S, Wer +
yi—1+9).
Because B satisfies NIARA, B" is an increasing function and X; > X, ;. Hence, we

know that:

A(S) < mly)(Wer — W0 %) +7(y;—1) (Wer — Wi (077))
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for all S and so A(S) < A(0) =0 for all S.

We have established that if (¢, 0, 7, .S) solves P2,and satisfies (A2) for some ¢, u'(¢;—1) =
BRE, 1u'(¢;) and Zgth 7o(0") is independent of 67 |. It follows that (c,0,7,S) satisfies
(A2) for (t — 1); by backwards induction, (c,0,7,S) satisfies (A2) for all ¢.

We have established that if (¢, 0, 7,.S) solves P2, then ¢ = ¢*. This immediately implies
that if (¢*,0,7,.5) lies in the constraint set of P2, it solves P2. Hence, an element (c,0,7,.5)
of the constraint set solves P2 iff ¢ = ¢*. It is easy to see that if ¢ = ¢*, then § = S* and

T=70

A3. Proof of Proposition 3

Let (c¢*, s,7,S) be an arbitrary feasible allocation. Because ¢* satisfies the consumption-
smoothing and NPV conditions, if an agent tells the truth, his consumption is optimally
smoothed. Hence, agents weakly prefer to tell the truth and not store, and so (¢*, s, 7,S5) is
incentive-feasible. It follows from Proposition 1 that there exists (¢*, 0, 7’,S") that is incentive-
feasible. From Proposition 2, this allocation is a solution to P2, and so must be a solution to
P1. It follows that (c*,s,7,S) is a solution to P1. The maximized values of P1 and P2 are
the same.

Now suppose (¢, s,7,.S) is some solution to P1 such that ¢ # ¢*. Again, from Proposi-
tion 1, there exists (¢, 0,7’,S’) that is a solution to P1. Because the maximized values of P1

and P2 are the same, (c,0,7',.5") solves P2. But this violates Proposition 2. O

A4. Proof of Proposition 4
We first prove condition (i). We know that in the unique solution to P2 consumption

smoothing is satisfied. Hence,

u'(¢;) = BREw (¢iy1).

From the strict convexity of u/(.), it follows that Eyu/(ciy1) > v/ (Eiciy1). This implies that
for all °,

u'(c(0)) = BREpu (c(077)) = u/ (Epreesa (07))
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and, in turn, it follows that

> Lo (6°(67)) — ci(6°(07)))m(67) 2 0

0TeyT
which implies that S; > 0, because we know from Proposition 2 that the resource constraints
hold with equality. This completes the proof of (i).

We next prove condition (ii). After any history 6*, Pr(6,, = 0 for all n > t|0") > 0.

Moreover, whenever 6,, = 0, then 7,,(0") > 0. It follows that after any history 6",

Zt: R"7,(6"(6") > 0.

This immediately implies that storage levels associated with any solution to P2 must be

nonnegative because u/(0) = oo. This completes the proof of condition (ii). O

A5. Proof of Proposition 5
To prove the first statement, consider a solution to P2 which satisfies the nonnegative

storage condition, and recursively define

Tt = R — 1,
5 =S
b (") = 0, — ct(0") — S, + RSy + by (071(0")) R.

We claim that this is an equilibrium. To see that the bond market clears, note that if we

make use of the individual’s resource constraint in equation (1), this implies that
Ebt =F {Tt — St + RSt_l + bt_lR}

which, along with the resource constraint and nonnegative storage, implies that E{r, — S; +
RS;_1} = 0, and this implies the result, because by = 0. To verify that individuals are behaving
optimally, note that the interest rate has been chosen so that the individuals are indifferent
between lending and storing. We also know that consumption is smoothed; therefore, we
need only check that the individuals’ budget constraints hold with equality. To see that the

individuals’ budget constraints are satisfied, note that

bT = —T7+ RST71 + quul

27



= —7p— Rrp 1+ R*Sp 5+ R*br

To prove the second statement, construct a transfer/storage scheme by defining 7, =
0; — ¢; and defining S; to be per capita storage (both public and private) in equilibrium.
This scheme must be an element of P2’s constraint set, because the NPV of the difference
between income and consumption must be zero in the equilibrium. Moreover, given that
R = (1 + r;), the consumption smoothing condition is satisfied, and so this scheme must be
a solution to P2. It is also a solution to P1, because aggregate storage is nonnegative. Thus,

the corresponding equilibrium allocation of consumption is efficient. O

A6. Proof of Proposition 6

To prove the proposition we show that if 14+r; # R, then there exists a Pareto superior
incentive-feasible allocation. To do so, consider an equilibrium of the dynamic incomplete
markets economy, {¢;, by, s, 7}, where in period n, 1+, > R. As in the proof of proposition
6, we can construct an associated incentive feasible allocation in which the consumption
allocation is the same as our incomplete markets economy and private storage is zero, by
defining 7, = 0; — ¢; and defining S; to be per capita storage. We denote this associated
incentive-feasible allocation by (¢, 0, 74, S;). For some 0" eyrtand 1 < j < J, consider
altering the consumption allocation (and correspondingly the transfer scheme) in period n
by setting &,(0" 1, y;) = . (0" ', y;) — &, where y; —y; 1 > & > 0, and choosing §(¢), where

En(0™ 1y 1) = cu(0" 1 y; 1) + 6(¢), so that ex ante utility is unchanged, or

T T
EY A @@ 0,) = By B u(e(d" T 6L)).

For ¢ sufficiently small:
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1. Since individuals strictly prefer to tell the truth under 7, the individual who has

income y; in period n has no incentive to misreport his income, or

T
w@®@ Ly) +E DY BT @0y 0h,,) >

t=n-+1
max u(y] + %n(én_la yj*l) - Sn)+
{05} | E ZtT:nH B (6, + Tt(énila Yj-1, ét(‘gfﬂ-l)) - St(9f¢+1) + RSt—l(%H))

2. Since 8" > 0 and 6(0) = 0, and individuals strictly preferred not to store in period
n under the initial allocation, the individual who has income y;_; in period n still has no

incentive to store, or
~ ;pan—1 ~ an—1
u/(ct(e ) yjfl)) < RﬂE@nHul(Ct(Q » Yj—1, 9n+1))'

3. Again making use the strictness of the incentive constraints and the properties of

0, the individual who has income y;_, has no incentive to misreport his income, or

T
u(@ (0" yj) + B Z B0y, Ohyy) >
t=n-+1

"n

i u(yj—2 + Tn(0 _l,yj) — 8n)+
{0} | E ZtT:nH 5t_nu(9t + Tt(énila Ys» ?h(@im)) - St(eim) + RSt—l(GZH))

4. Individuals have no incentive to save between periods n — 1 and n, since

B (c(8",0,) — Bl @@ 60)) = iy [w(eal@ ) — w/(ca®@ ) — )]
(i) [ (@ i) = e i) +0)]
() (a8 )+ (g 1) (ea® 5 1))

< 0

12

from the convexity of u’.

Since

u(e(@ ' yp) < u(@@ ' y) < u@@ L yim) < ula@ L ym),
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e > 0(g), and the resource constraint is relaxed. It’s fairly straightforward to allocate these
additional resources in a way that doesn’t violate the incentive constraints and raises ex ante

utility since all of the incentive constraints still hold strictly. O

A7. Proof of Proposition 7

We consider two alternative economies in which income uncertainty dies out after some
period T with either the highest or the lowest possible income. The payoff from the efficient
arrangement in our infinite horizon economy (in which income uncertainty persists) is brack-
eted by the payoffs of the efficient arrangement in these two income risk truncated economies.
We show that the solutions to P2 in these truncated economies satisfy the consumption-
smoothing and NPV conditions. By increasing the truncation period 7', we squeeze the
solution to P2 in the infinite horizon economy between these two allocations that satisfy
the consumption-smoothing and NPV conditions. We show that this implies the solution to
P2 in the infinite horizon economy must also satisfy the consumption-smoothing and NPV
conditions.

Define V' to be the supremal ex-ante utility derived from the allocations in the
constraint set of P2. Consider two truncated versions of the infinite-horizon environment. In
the first truncated environment, in period ¢t > T, all agents receive the highest income level, y .
In the second truncated environment, the planner is endowed with Sy units of storage at the
beginning of time, and in period ¢t > T, all agents receive the lowest income level, y;. We call
the first environment Hy and the second environment Ly (Sy). Define V.. to be the supremal
ex ante utility derived from allocations that satisfy the constraints of P2 in environment Hy.
Define V,..(Sp) to be the supremal ex ante utility derived from allocations that satisfy the
constraints of P2 in environment Ly(Sp). Let ¢j ) be the unique consumption allocation
in Ly(Sp) that satisfies consumption-smoothing and NPV conditions (the existence of such
an allocation is guaranteed by our assumptions that v is bounded, R > 1, and y; > 0).

Part 1 : We first want to show that any solution to P2 in environment L (Sp) is the
same as cj, (So). The key to establishing this result is to demonstrate that in any solution to
P2, consumption is smoothed from period ¢ to period (t+1), ¢ > T, and 77(67)+ RN PV (%)
is independent of #7, where NPV (#") is the NPV of the transfers received from period
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(T + 1) onward by an individual with reporting history #7. Once we establish these claims,
it is straightforward apply the backward induction arguments in the proof of Proposition 2
to prove that any solution to P2 in environment L;(Sp) satisfies the consumption-smoothing
and NPV conditions.

We prove first that consumption-smoothing is satisfied for any solution to P2 for ¢ > T.
Note that in any allocation, ¢, for ¢ > T, depends only on #”. Suppose first that consumption
is not smoothed from period ¢ to period (¢ 4 1) for some agent with a history of reports 67
Then the planner can raise consumption in period ¢ by ¢ and lower consumption in period

(t+1) by £(6) so as to leave the agent’s utility
u(ce(07) + 6) + Bulcer (07) — £(6)) = u(en(0)) + Bulcer (67))

unchanged. If ¢ is sufficiently small, § < R1(0); therefore, this new plan gives the planner
extra resources. By arguments similar to those made in the proof of Proposition 2, we know
that this change in the consumption plan will not lead an individual to deviate. Because we
have found a plan that is incentive-feasible and leaves the planner with more resources, the
allocation without consumption smoothing after period T is not a solution to P2.

By using arguments similar to those in proposition 2, we can now prove that TT(QTfl, yj)+
RAINPV (O™ y;) = m0(0" " y;_1) + RINPV(0"" y;_1) for all j. But then applying the
same backward induction argument as in Proposition 2 implies that (CET(SO), 0,7,S) solves
P2 in environment Ly (S).

Part 2 : We know that
Vi, > VP > U(c*) > Vi, (0).

If we can prove that as T' goes to infinity, (Vi — V5..(0)) converges to 0, we will know that
(¢*,0,7,S) solves P2. The rest of the proof consists of proving this.
Let c; L (So) denote the period ¢ component of the unique consumption allocation that

satisfies the consumption-smoothing and NPV conditions in Ly (Sp). We claim that

1 rr(50) (Ui) 2 €1 Lr (s (y5) for all j.

Suppose this claim is false. Then ¢} | o (y;) < €], | (5)(y;) for some j. But from the

consumption smoothing condition, ¢} LT(SO)(y]-, Yi) < ¢, (y;,y:) for some y;. Similarly, there
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exists a history 87 such that for all ¢,

CZLT(SO)(Qt(QT)) < CZLT_l(so)(Qt(QT))-

This violates the NPV restriction, because for any history, the NPV is higher in environment
T than in environment (7' — 1).

This means that V; _(0) < V/ (0) for all T. Now define Sor = R~ (y; — 1)/ (R — 1),
and note that

Vi, (Sor) > Vi,

because the planner can replicate any allocation in Hyp if endowed with this much initial

storage. Hence,

VHT - VLT (0)

IN

Vi (Sor) — Vi (0)
Vi (0)Sor

A

< V[,(0)Sor.

Because Sor converges to 0 as T goes to infinity, the proposition is proved. O
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