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Technical Appendix I

by

Fernando Alvarez

Introduction

This appendix describes the procedures used to construct the balance sheets reported in
Tables 1 and 2 (pages 536 and 537 of the article). Given the nature of our model, we organize the
data so that they are consistent with the sectors that are present in our model economy and the
ownership relationships among these sectors. Of prime importance is how much each sector owes
to the other sectors.

For our study the sectors of interest are the household, banking, and government sectors.
In Tables 1 and 2 of the paper we report the balance sheets for a consolidated Household Sector and
a consolidated Corporate Sector for the U.S. economy. 'fhese are the two sectors that correspond
most closely to the sectors in our model economy. An important difference is that in our model
economy the Corporate Sector does not own or rent physical capital. Instead all the capital is in the
Household Sector and is used in household production. We emphasize that our definition of the
Household Sector is not the standard one used in the National Income and Product Accounts. Our
definition is consistent with the concept of a household that follows from the theoretical framework
employed in the paper. In pafticular, it is the budget constraints and the ownerships of the assets
which define the units. Thus if a household owns and operates a small business, such as a farm, this
business is consc-:»lidated with that household in our framework. Corporations and governments, on
the other hand, are distinct legal entities which own assets and issue liabilities.

Our primary source of information is the set of balance sheets produced by the Flow of Funds

Division of the Board of Governors of the Federal Reserve System. The balance sheets in Tables



1 and 2 in the paper differ from the balance sheets in the Flow of Funds data set in two main
respects: (i) the sectors covered, and (ii) the criteria used to classify assets and liabilities.
Appendix I is organized as follows. In the first section we describe the framework that the
Flow of Funds Division uses to organize their data. In the second section we describe in detail the
framework that we use to organize the data. In the third section we add a sector to the Flow of
Funds system, obtaining what we refer to as the expanded Flow of Funds system. The fourth section
describes the procedure used to obtain our system of balance sheets using the expanded Flow of
Funds system of balance sheets. In the fifth section we describe how to obtain Tables 1 and 2 from
our system of balance sheets. A series of notes describing technical details not covered in the main

text conclude the appendix.

1. The Flow of Funds Framework

Our primary source of data is the Balance Sheets Fbr the U.S. Economy 1949-1990, Septem-
ber 1991, Board of Governors of the Federal Reserve System, Flow of Funds Division. This
publication reports year-end balance sheets for the following five sectors for the 1949-1990 period.

These sectors are:

Households, Personal Trust, and Nonprofit Organizations,

* Farm Noncorporate Business,

Nonfarm Noncorporate Business,

* Nonfinancial Corporate Business, and

Private Financial Institutions.

The balance sheet for each of these five sectors lists the stock of various tangible and

financial assets held by the sectors, the stock of various liabilities issued by each sector, and each



sector’s net worth. Tangible assets are partitioned into subsets defined by their physical characteris-
tics (for example, land, plant, and equipment). Financial assets are partitioned into equity and debt
assets. Financial assets and liabilities are partitioned into subsets defined by their contractual
characteristics (for example, deposits, trade credit, mortgages, and bank loans).

We use the following notation to describe the Flow of Funds balance sheets. Let i and j
denote any two sectors, r denote tangible asset types, and k denote contractual arrangements types.

Then the sector i balance sheet is described by:

=]

.. type r tangible assets owned by sector i,
A;: type k debt assets owned By sector i,
E,: type k equities owned by sector i,

L,: type k liabilities issued by sector i, and

NW;: net worth of sector i,

for all tangible assets type r and all contractual arrangements types k. The net worth of a sector is

defined as total assets minus total liabilities.

2. Our Framework

Our system of balance sheets, unlike the Flow of Funds system, is closed. By closed we
mean the following: (i) all debt assets of a sector in the system are liabilities of sectors in the
system, (ii) all liabilities of a sector in the system are debt assets of sectors in the system, (iii) all
equity holdings ;>f a sector in the system are issued by sectors in the system, and (iv) all the equities
issued by a sector in the system are held by sectors in the system. Our system consists of a balance
sheet for seven sectors. These are the five sectors listed above for which the Flow of Funds

provides balance sheets, plus two sectors that we add in order to have a closed system. These two



additional sectors are a consolidated U.S. Government Sector and a Rest of the World Sector. Our
Government Sector is the financial part of the consolidated governmental units, which is the part that
is relevant for the study in the article. It corresponds roughly to the consolidated Federal Reserve
System and treasuries of the various levels of government. Our Rest of the World sector is a
fictional sector that we create to deal with the assets held by U.S. residents issued by foreigners and
with the liabilities issued by foreign residents held by U.S. residents.

We use the following notation to describe our system of balance sheets. Let i and j denote
any of these seven sectors and r the tangible asset types. We use lowercase letters for the entries
of our balance sheets (for the Flow of Funds we use capital letters). In our framework the sector

i balance sheet is described by:

t,.  type r tangible assets owned by sector i,

a;: ldebt assets owned by sector i and issued by sector j,
equity assets owned by sector i and issued by sector j,
L liabilities issued by sector i and owned by sector j, and

nw;: net worth of sector i,

for all tangible assets type r and for all seven sectors j. We also define net worth as total assets
minus total liabilities.

We emphasize that there are two main differences between our system of balance sheets and
the Flow of Funds system. The first is that our system is complete. The second is that we partition
the financial assets and liabilities in subsets defined by the issuer-owner relationship (the ij’s and
ji’s). The Flow of Funds balance sheets partition the financial assets and liabilities in subsets defined
by the type of securities or type of contractual arrangements (the k’s) used to create the correspond-

ing assets and liabilities.



3. Expanding the Flow of Funds System: Adding a Rest of the World Sector

To deal with the foreign assets and liabilities we create a fictional sector that we refer to as
the Rest of the World Sector. The Flow of Funds reports the Net Foreign Assets. These are the
holdings of foreign financial assets by U.S. residents (that is, American households, businesses, and
government) and the holdings of U.S. financial assets by foreigners. The Flow of Funds reports
these financial assets holdings, partitioning them into subsets defined by their contractual characteris-
tics.

We use the Net Foreign Assets to create a balance sheet for our fictional Rest of the World
Sector. We organize this balance sheet in the same way as the other five balance sheets reported by
the Flow of Funds. The U.S. financial assets held by foreigners are defined as the Rest of the World
assets. The foreign assets held by U.S. residents are classified into two groups: debt assets and
equity assets. These debt assets are defined as the Rest of the World liabilities. We define the Rest
of the World net worth to be its assets minus its liabilities. (For more specific information about this
procedure, see Technical Note 1.)

The expanded Flow of Funds system of balance sheets is not closed. The Flow of Funds data
set does not contain a balance sheet for the consolidated U.S. Government Sector. This is not a
severe problem. If we have all the sectors’ balance sheets except one, the elements of this missing

balance sheet are implied by the elements of the other balance sheets.

4. Obtaining our System of Balance Sheets from the Expanded Flow of Funds

System

This section describes the procedure used to obtain our balance sheets system using the
expanded Flow of Funds system of balance sheets. The first step is to estimate the t;, a;, and e;

using the expanded Flow of Funds T;,, A, E;, Ly

4» Ly» and NW,. The second step is to estimate the I



using the a;. The final step is to compute the nw; using the t;, ay, e;, Iy, and the definition of net

worth.

Tangible Assets

The t;, (type r tangible assets owned by sector i) are set equal to the T;. (type r tangible assets
owned by sector i) for all tangible asset types r, and for all sectors i different from the Rest of the
World and Government Sectors. Since we do not have comparable data for the (net) tangible capital
of the Rest of the World Sector, we set its tangible capital equal to zero. Since we consider only
the financial part of the consolidated governmental units, the tangible asset of the Government Sector

is zero.

Debt Assets
In this section we describe the procedure used to compute the a; (debt assets owned by sector

i and issued by sector j). First we deal with sectors other than the Government.

The Nongovernmental Sectors i

We let A, denote the stock of the contractual type k debt assets owned by sector i and issued
by sector j, and sy, denote the proportion of the contractual type k debt assets owned by sector i and
issued by sector j. Note that Iy = 1, and that Ay = X;A;;. These elements are related as

follows:

Aijk = sijk . Aik' (I'l)

The Flow of Funds system reports the A, but does not report the A;; or ;. Some assump-

tion is necessary if we are to estimate the Ay from the Flow of Funds data. We assume that

Sijk = sjk (I. 2)



for all i. Given this assumption we can use the fact that

S = ij/(; Lik) @.3)

to compute the s from the Flow of Funds data.

Finally, to determine the a; we aggregate the Ay,

G = ZAijk’ (L.4)

k

This completes the specification of the procedure used to estimate the a; for the nongovernmental

sectors i.

The Government Sector
Let i = g denote the Government sector. We estimate the a; directly from the reported
liabilities of sector j in the Flow of Funds balance sheets. For each sector j, we add up all liabilities

that we identify as being owned by the Government sector to obtain our estimate of a;.

Equity Assets
In this section we describe the procedure used to estimate the e; (equities owned by sector

i and issued by sector j). First we deal with sectors other than the Government.

The Nongovernmental Sectors i

The procedure for equity assets is very similar to the procedure for debt asset; hence the
description of our procedure for equity assets will be abbreviated.

We use gy, to denote the proportion of type k equities owned by sector i and issued by sector

j- We make the assumption that the proportions qy; are independent of i. Thus gy = qy. Asin



the case of debt assets, the Flow of Funds data set does not report the q;;. Hence, we must estimate
them.

A feature that simplifies the computations is that each sector issues only one type of equity
assets (see Technical Note 2 for the one exception). Given that each sector issues only one type of
equity, then the k index (type of equity according to contractual characteristic) and the j index (issuer
of the equity) correspond to each other.

Thus,

1 if j is the sector that has issued the share of equity,

Qe = (LS)
0 otherwise.

Using the q;, we estimate the e; as follows:

eij = ; q_]k M Eik' ) (1.6)

The Government Sector
For the Government Sector we assume that it does not own any other sector equities, nor

does it issue any equity type.

Liabilities

In this section we describe the procedure used to estimate the 1; (liabilities issued by sector
i and owned by sector j). We estimate the I;; using our previous estimate of a;, and by requiring that
the claims between sectors be consistent, i.e., that one sector’s liabilities correspond to another
sector’s debt assets. With these assumptions our estimates of the L; is equal to a; for all i and j.

Thus

111 = aji. (1.7)
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It is important to note that our treatment of the mutual fund shares is different from the Flov§
of Funds system treatment. We follow the Flow of Funds conventions and consider the holdings of
mutual fund shares as an equity asset of the sector that holds them. We deviate from the Flow of
Funds conventions in that we do not consider the mutual fund shares as a liability of the Private
Financial Institutions Sector. (See Technical Note 3.)

Our estimates of the total liabilities for a sector may differ from the total reported in the Flow

of Funds data set. (For a discussion of the reasons for these discrepancies, see Technical Note 4.)

Net Worth
In this section we compute the nw; (net worth of sector i) as total assets minus total liabilities.

Thus,

nw; =' ;tir + JE a;J - JE llj‘ (I.S)

Our net worth estimates for the Nonfinancial Corporate Business Sector and the Private
Financial Institutions Sector may differ from the total value of the equities issued by these sectors.
This is mainly due to the fact that in the Flow of Funds balance sheets, equity holdings are reported
at market value but the net worth is defined as a residual category being the difference between total

assets and total liabilities. (For more details on this issue, see Technical Note 5.)

5. Producing Tables 1 and 2: Consolidation of Sectors

Tables 1-and 2 in the article report balance sheets for consolidated sectors. Table 1 presents
the balance sheets for what we refer to as the consolidated “Household Sector.” This is the consoli-
dation of the Households, Personal Trust, and Nonprofit Organizations Sector, the Farm Noncorpo-
rate Business Sector, and the Nonfarm Noncorporate Business Sector. Table 2 presents the balance

sheets for what we refer to as the consolidated “Corporate Sector.” This is the consolidation of the
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Nonfinancial Corporate Business, the Private Financial Institutions, and the Rest of the World
Sectors.

We now describe the procedure used to consolidate the balance sheets of any two sectors in
our framework. The extension of this procedure to consolidate three or more sectors is straight-
forward. Suppose sectors i and j are the sectors to be consolidated. Let s denote any sector different
from i and j. Let c denote the new sector, which is the consolidation of sectors i and j.

The type r tangible assets of sector ¢ are

fe = b+ b @9

We define the debt assets owned by, equities owned by, and liabilities issued by the consoli-
dated sector ¢ by simply adding up the two corresponding quantities for sectors i and j, for each

other sector s. Then we compute a, e, and 1, for each sector s as

A, = @ + aju (I. 10)
€ = €; T €, (I.11)
le = Ly + L. (1.12)

We define the consolidated sector ¢ net worth as the sector ¢ total assets minus sector ¢ total

liabilities. Formally this is

w, =Yt + Y a,+ Y e, — 3L, (1.13)

This procedure produces a consolidated sector ¢ that has assets and liabilities net of intra-

sectorial claims. By this we mean
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e the consolidated sector does not hold any debt assets issued by any of the sectors in the
consolidation,

e the consolidated sector does not hold any equity assets issued by any of the sectors in the
consolidation, and

e none of the consolidated sector liabilities are held by any of the sectors in the consolida-

tion.

Our motivation for producing consolidated balance sheets with assets and liabilities net of
intrasectorial claims is that in our model economy there are no intrasectorial claims. In our model
economy all the household borrowing and lending, and all the government borrowing and lending
is intermediated by banks. For the U.S. economy, the household’s nonintermediated borrowing and
lending is in fact small. The stock of debt assets issued by units in either the Households, Personal
Trust, and Nohproﬁt Organizations Sector or in the Farm and Noncorporate Business Sector and held
by other units in either of these sectors is less than one percent of GNP in 1959, 1975, and 1986,

the years for which we report balance sheets.

Technical Notes

Technical Note 1

In our framework we impose the following consistency requirement:

e Debt assets of one sector correspond to the liabilities of some other sector.

e Equity assets represent claims to residual profits. They have no corresponding liability.

The second part of the consistency requirement implies the following treatment for the
liabilities of the Rest of the World Sector. The equity assets issued by foreigners and held by U.S.

residents are not reported as liabilities of the Rest of the World Sector. As equity assets they are
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claims against the profits of the Rest of the World Sector and therefore have no corresponding
liability. These equity assets are foreign corporate securities and U.S. direct foreign investment

abroad.

Technical Note 2

Recall that an equity is defined (indexed) by its contractual characteristics (k index) and by
its issuer (j index). For most of the equity types (for example, noncorporate business equity, mutual
fund shares, and foreign direct investment abroad), the formula specified in the subsection equity
assets applies, since each equity type is issued by only one sector. For these equity types there is
a one-to-one correspondence between the k and j indices. For example, noncorporate equity is only
issued by the Noncorporate Business Sector. The exception to that formula is corporate shares. The
corporate shares holdings of a sector can be partitioned into those issued by the Nonfinancial
Corporate Buginess Sector, the Private Financial Institutions Sector, and the Rest of the World
Sector.

Thus for k equal to corporate shares, we use

G = NW; /(Zi: NW) (L.14)

j being Nonfinancial Corporate Business, Private Financial Institutions, and the Rest of the World
Sectors, and where the summétion is over the NW’s of these three sectors.

Recall that these NW,’s are net worth reported by the Flow of Funds. The net worth of the
Private Financia-l Institutions Sector is computed using the Flow of Funds total liabilities, which

include an entry for the value of the mutual fund shares (see Technical Note 3 on this point).
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Technical Note 3

In the Flow of Funds balance sheets, mutual funds are part of the Private Financial Institu-
tions Sector. The Private Financial Institutions financial assets reported in the Flow of Funds
balance sheets include the financial assets that belong to the mutual funds. The Flow of Funds
balance sheet for the Private Financial Institutions Sector also include a liability of the same value,
denoted as “mutual fund shares.” We do not consider the mutual fund shares as a liability of the
Private Financial Institutions Sector, but as a part of the net worth of this sector. This is a conse-
quence of our consistency requirement that equity assets do not have a corresponding liability, (see
Technical Note 1 on this point). Consequently we follow the Flow of Funds conventions and
consider the holdings of mutual funds as an equity asset of the sector that holds them. But we
deviate from the Flow of Funds convention in not considering mutual fund shares as liabilities of the

Private Financial Institutions Sector.

Technical Note 4

The total liabilities for a sector in our system of balance sheets may differ from the total
liabilities for that sector in the Flow of Funds system. There are two main reasons for these
differences.

The first is that our treatment of mutual fund shares in the balance sheet of the Private
Financial Institutions Sector is different from the treatment in the Flow of Funds system (see
Technical Note 3 on this issue).

The second is that the procedure used to compute the liabilities of each sector is based on our
consistency requirement (see Technical Note 1). There are three ways in which our procedure may

produce total liabilities for a sector different from the total liabilities reported by the Flow of Funds.
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® To compute the asset of each sector we use the s;; and we make the assumption that the
S; are the same for all sectors i. Our procedure uses the assets of all the sectors to
compute each sector’s liabilities. Consequently deviations from this assumption may
produce different total liabilities.

e There is no balance sheet for the Government Sector in the Flow of Funds system. Our
procedure uses the assets of the Government Sector to compute the other sectors’
liabilities. Consequently, errors in the computation of the Government Sector assets may
produce different total liabilities.

® The assets and liabilities of the Flow of Funds system may not satisfy our consistency

requirement. In this case, even if our assumption on sy, is satisfied and our assets for

the Government Sector are correct, our procedure may produce different total liabilities.

Technical Nofe 5

The Flow of Funds equity holdings are reported at market value. The net worth of the
Private Financial Institutions Sector and the net worth of the Nonfinancial Corporate Business Sector
are defined as total assets minus total liabilities. There are two sources of discrepancy between the
market value of equity and the net worth. The first discrepancy is errors in the Flow of Funds
system. In particular, not all assets and liabilities are measured and some assets and liabilities are
not measured at market value. The second discrepancy is that our definition and the Flow of Funds’
definition of liabilities differ. (See Technical Note 4.)

To reconcile these differences we introduce a new category which we refer to as imputed
unassigned net liabilities. We define this new category as the difference between the market value
of equity held and the estimated net worth. This category includes unmeasured liabilities minus

unmeasured assets as well as part of any estimation errors.
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Technical Appendix II
by

Terry Fitzgerald

In this appendix we describe the computational procedures used in the paper. First we
present some theory and an algorithm for solving the optimality equation for a finite-state, discounted
dynamic program. Next we describe our procedure for computing candidate price processes and a
candidate allocation which satisfy all the equilibrium conditions except possibly one. If an equilibri-
um exists, these candidate elements are the unique equilibrium for the policy arrangement. Third
we describe our procedure for testing whether the candidate satisfies the final equilibrium condition.
Finally we describe the procedure for computing the welfare effects of changing policy arrangements.

Throughout this appendix we refer to equation numbers and use notation from the paper.

1. Finite-State, Discounted Dynamic Programming: Some Theory and an Algorithm

In this section we describe our algorithm for solving the optimality equation for a finite-state,
discounted dynamic program and discuss the theory underpinning the algorithm. The section is
organized as follows. First we present a prototype structure of the optimality equation for a finite-
state, discounted dynamic program. Next we describe the standard solution procedure. Third we
describe a class of iterative solution procedures and show that if the initial point satisfies a particular
condition, these iterative schemes converge to the solution of the optimality equation. We then
present an algorithm for computing an initial point which satisfies the particular condition. Finally

we present an algorithm for finding an approximate solution to the optimality equation.
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The Prototype Optimality Equation
A prototype structure of the optimality equation for a finite-state, discounted dynamic

program takes the form

v(x,z) = n;ax{F(d,x,y,z) + 8 Q(z,z’)v(y,z’)} (IL.1)
.y

Z€Z
subject to
dy) € T(x,2) all (x,2) € X X Z
where
x is the endogenous state;
z is the exogenous state;
y is the next period’s endogenous state;
z' is the next period’s exogenous state;
d contéins the decision variables that are not components of y;
X is a finite set of possible values for x and y;
Z is a finite set of possible values for z;
D is a finite set of possible values for d;
- T'(x,2) is a nonempty correspondence for each (x,z) € X X Z;
Q(z,,2,) are the transition probabilities Prz’ = z,|z = z];
F is a real-valued bounded return function;

@ is a discount factor belonging to (0,1).

Remark 1. One principle used in defining the constraint correspondence I for any dynamic program-
ming problem is to make the correspondence as small as possible. Often the economics

of a problem implies that certain restrictions must be satisfied at any optimal policy.
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Imposing these additional restrictions reduces the sets I'(x,z) over which one must search

and typically reduces the computational cost of solving the problem.
We use II to denote the set of feasible Markov policy rules; that is,
II={m XXZ->XXD]| 7x,2) € I'x,z) forall (x,z) € X X Z}.

We make use of the fact that «(-, -) can be represented as two functions w,(«,+) and wy(+, *), where

T, X XZ-»Xandng X XZ—-D. Also, let

V={v XXZ->R}

Then any value function v € V can be represented as a point in R, where q is the number of points
inX X Z.
It will be useful to write the optimality equatiori in a more concise language using the

following operators. The operator S: V X II -» V is defined by

S(v,m)(x,2) = Flry(x,2),x,m,(x,2),2] + B Y, Qz,2')v[m,(x,2),z'].

z’E€Z

The operator P: V - II is defined by

P(v) = argmax S(v,7).

€Il

Remark 2. A problem arises if the argmax defining P is not unique. In such cases there must be a
selection rule for P to be a function. We suppress the dependency of P on this selection
rule in order to simplify notation. In practice such ties almost never occur and are not

an issue of practical importance.

The operator T: V - V is defined by
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T(v) = S[v,P(v)].

The optimality equation (II.1) can now be written v = T(v). Solving the optimality equation
means finding a v € R? which is a fixed point of T. It is well known that there exists a unique

fixed point of T. This unique fixed point is denoted v* throughout this appendix.

The Standard Solution Procedure

One procedure for constructing the fixed point, v*, of T is to use the method of successive
approximations. Given any v, € RY, this procedure produces a sequence {v;} by computing v;,, =
T(v) forj =0, 1, 2, .... Since the space V is complete under the sup norm and T is a contraction
with modulus 8, we know that {v;} converges uniformly to v* in the sup norm for any v, € R%.
The difficulty with using this algorithm for our problem is that it requires excessive computer time.

Throughout the remainder of this appendix if a norm is not explicitly stated, the sup norm

| denote the sup norm.

is assumed. Let |

A Class of Solution Procedures

In this subsection we define a class of operators for which v* is a fixed point. Each operator
along with the method of successive approximations defines a solution procedure. We found that
given an initial point w, € R9, some solution procedures in this class dramatically reduced the
computer time required to approximate v* to a given degree of accuracy, compared to the standard
solution procedure.

This subsection is organized as follows. First we define a class of operators. Second we
show that if the initial point w, € RY satisfies T(w,) = w,, then any operator from this class of

operators and the method of successive approximations produces a sequence which converges
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uniformly, monotonically, and geometrically to v*. Third we show that this convergence result

continues to hold when the class of operators is generalized.

A Class of Operators

These operators are indexed by positive integers k and are denoted T,: V - V. The

operators are defined recursively by

Ty (v) = S[T,;(v),P(V)] fork=1,2,3,...where To((v) =v,and T, = T.

Remark 3.

Remark 4.

Remark 5.

Remark 6.

Remark 7.

Remark 8.

The T operator is the member of this class with k = 1. Thus the standard solution

procedure falls within the class of procedures.
The operator S(+,7): V - V is a contraction mapping and is monotone for any #« € II.

Ty (v) is the value of following policy P(v) for k periods given that the k + 1 period state

is valued according to v.

The T, operators are not in general monotone when k = 2. Consequently, standard

monotonicity arguments cannot be used when dealing with sequences generated using T,.

When k = 2, obtaining T, (v) for a given v is computationally more expensive than
obtaining T(v). The computational savings of using an operator with k = 2 depends
upon the problem at hand and the selected k. For our problem the time required for one

Ty iteration was roughly 1 + 0.0002 X (k—1) times the time required for one T iteration.

Let T,, = lim,,,T,. Given an initial point, the solution procedure using T, corre-
sponds to what Bertsekas (1976, p. 245) calls the policy iteration algorithm and what

Sargent (1987, p. 47) calls the Howard policy-improvement algorithm.
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Convergence Properties of Sequences Generated by a Solution Procedure

We next present a theorem stating that for any k = 1, if the initial point wy, € RY satisfies
T(wy) = w,, then T, and the method of successive approximations produces a sequence which
converges uniformly, monotonically, and geometrically to v*. Before stating the theorem, we
provide two lemmas which allow the proof of the theorem to be made concise.

Given an operator T, with k = 1 and an initial point w, € RY, define the sequence {w,} as

Woep = Ty(wy) forn=0,1, 2, ....

Lemma 1. If T(w) = w,, then
(l) T(wn+l) = Wi+t and

(i) Woe1 = T(wy).
Proof. By assumption w, < T(w,). The monotonicity of S(-, =) and the definitions of the T; imply
Wy = T(W,) = Ti(W) = T,(Wp) = ... < Ti(Wp) = Woyy < S[W,y,P(W,)] (IL.2)

by the induction argument. This establishes (ii).

By the definition of T,
S[War1,PW,)] = T(wy,y).
This, along with (II.2), establishes (i). [J
Lemma 2. 1f T(Wy) = W,, then w, < v* for all n.

Proof. The properties of T guarantee that if T(v) = v, then v < v*. Lemma 1 implies that

T(w, = w,. Hencew, < v*. [J
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THEOREM. If T(wy) = w,, then
(i) {w,} is a nondecreasing sequence,
(ii) {w,} converges uniformly to v*, and

i) |wv*| < |w,~-Tow )| /(1-B)forn=0, 1,2, ....

Proof.
() Lemma 1 implies (i) directly.

(ii) Lemmas 1 and 2 imply T(w,) < w,,, < v*. These inequalities imply

Ive-wourl < lv - T | (IL.3)
The fact that T is a contraction with modulus 8 implies

v - Twa | < Bllve-wal. _ (L4)
Combining (I1.3) and (II.4) we have for all n

lve-wasrl = Blve-w,l.
This proves (ii).

(iii) The fact that T is a contraction with modulus 8 implies (iii) directly. [

Given an operator T, with k > 1 and an initial point w,, define the sequences {w,} and {v,}

as follows: w,,,,_1 = T(w,) and v, = T(v,) forn =0, 1, 2, ... where v, = w,.
PROPOSITION. If T(wy) = w,, then

[v¢w,| < |[v*v,|| forn=0,1,2, ...
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The proof is straightforward. This proposition states that for certain initial points and for any fixed
number of steps, any solution procedure in the class of solution procedures is guaranteed to result
in a value function at least as close to v* in the sup norm as the value function obtained by the

standard solution procedure.

A More General Class of Operators

We now describe a more general class of operators which includes the T, operators, and we
discuss the convergence properties of sequences generated by operators in this class using the method
of successive approximations. The operator that we used in our algorithm for approximating v* is
an element of this more general class of operators.

Nowhere in the lemmas or in the theorem do we use the fact that k is fixed for all iterations
in a solution procedure. Hence, the theorem can be rewritten to incorporate the possibility that k
varies across iterations. Moreover, the value of k at each iteration can be a function of previously
computed elements. In our algorithm, for example, the value of k at iteration n is set to 20 if P(w,)
# P(w,,); when P(w,) = P(w,_,), we pick k so that Ty(w,) and T,_,(w,) are sufficiently “close.”
We found that an algorithm using this operator and the method of successive approximations required
less computer time to approximate v* to a given degree of accuracy than algorithms using the fixed

k operators.

An Initial Point for a Solution Procedure

For each operator in the general class of operators we have discussed, the method of
successive approximations is guaranteed to converge to v* if the initial point w, € R¢ satisfies
T(wp) = w,. (For T, convergence is guaranteed from any initial point.) Here we provide an

algorithm for constructing such a w,.
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Let b = min F(d,x,y,z)/(1-8) where the minimum is over all elements in the graph of
correspondence I'.  For any = let z,, ,(w) = S[z,(w),n] where zy(7) = b. The sequence {z,(x)} is
increasing. By definition of T, T[z,(7)] = z,,,(%) = z(x). Thus, w, = z,(7) has the property

T(wy) = w,.

Remark 9. The sequence z,(w) is the value of following policy = for n periods and then receiving

terminal return b at stage n + 1.

An Algorithm to Solve the Optimality Equation

In this subsection we develop an algorithm for computing a sequence of functions whose limit
is the solution to the optimality equation. First we develop the convergence criterion used to
determine when to stop the iterations associated with any solution procedure. We then present the

algorithm.

The Convergence Criterion

We now describe the criterion used to determine when to stop iterating. The iterations are
continued until the difference between v, and T(v,) is sufficiently small. Part of the definition of the
algorithm is this measure of difference. The measure D: V X V — R, need not be a metric, but
must have the following properties: i) D(v,w) = 0 if and only if v = w; ii) if D(v,w) is sufficient-

ly small, then P(v) = P(w); iii) if lim,.,, |v,—v] =0, then lim .. D(v_,v) = 0.

Remark 10. Part iii of the Theorem can be used to compute an upper bound on the distance in the

sup norm between v* and any approximation to v*.

The Algorithm

Step 1. Choose an e > 0.
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Choose ak = 1.

Step 2. Compute v = min F(d,x,y,z) / (1-5).
Choose a w € II.

Choose an integer n = 0.

Step 3. Repeat the following n times:

Compute v = S(v,7).

Step 4. Compute ' = P(v).

Compute v’ = T(v).
Step 5. If D(v,v') < ¢, go to Step 11.
Step 6. Compute v’ = T, (v).

Step 7. If @ # «', then:

Set # = 7'.

Setv =v'.

Go to Step 4.
Endif.

Step 8. Setv =v'.

Cor-npute v = S(v,7’).
Step 9. If D(v,v') > ¢, go to Step 8.

Step 10. Set # = «'.



25

Go to Step 4.
Step 11. Stop.

Remark 11. One problem is the choice of e. A general principle is to set ¢ small enough so that
further reductions in € have a negligible effect on the statistics of the model’s generated

data which are of interest.

2. Computing a Candidate for an Equilibrium

Generically there is at most one equilibrium for a policy arrangement. The computational
procedure that we use solves for the unique set of elements that satisfy all the conditions for this set
to be an equilibrium except for one. The additional requirement for the set to be an equilibrium is
that the stochastic process on government consumption be nonnegative with probability one. In this

section we explain how to compute this candidate set of elements.

The Inflation Rate and Interest Rate Processes

Obtaining the candidate inflation rate and interest rate processes is straightforward. The
equilibrium conditions require that the processes on the inflation rate, e(z), and the nominal interest
rate on government debt, i(z), be equal to the corresponding elements of the policy arrangement, e(z)
and «(z). The interest rate processes on deposits and loans are then determined by equations (8) and
(9). The inflation rate and interest rate processes are required for the household to have a well-

defined dynamic programming problem.
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The Household Policy

We now explain our procedure for computing an approximate solution to the optimality
equation for the household’s finite-state, discounted dynamic program. First we specify the
optimality equation which we solved. Second we state our measure of difference used in the
convergence criterion for our solution procedure. Third we describe the details of the algorithm we
used to approximate the solution to the household’s optimality equation. Finally we discuss ways

to reduce the computational cost of solving the optimality equation.

The Household’s Optimality Equation

We now specify the household’s optimality equation for which we find an approximate
solution. We use the principle of making the constraint correspondence as small as possible. To
do this we exploit three facts about any optimal policy: (i) equations (20) and (22) will hold with
equality; (ii) ﬁouseholds will never simultaneously hold deposits and loans; and (jii) households will
never buy and sell capital in the same period. These facts imply that for any optimal policy the
decision variables c, d, £, x4, and x* can each be written as a function of variables a, k, s, z, a’,

k', n. Using these functions, the optimality equation can be written

v(a,k,s,z) = max F(n,ak,a’k’,s,z) + 8 E v(@@',k',s,2)7[(s’,2") | (s,2)] (dL5)

n,a’ k'
subject to

(n,a’,k") € I'(a,k,s,z).

This optimality équation maps into the prototype structure (II.1) defined earlier, where d = n, x =
@k, y = (@'.k'), and z = (s,2).
The constraint correspondence I' is not well-defined until the grids on A and K are specified.

We set K = {0,3}. We chose an A grid with 800 evenly spaced points. The lower bound on A was
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chosen to be the maximum amount a bank would be willing to lend to a household who holds the
maximum stock of capital in the finite set K. Hence the lower bound on A depends upon K and ¢,
and for our economies equals -2.7. The spacing was selected so that 0.0 was in the grid and the
upper bound of the grid was slightly greater than 6.0. This upper bound was selected through
experimentation and was subject to the restriction that no household’s optimal policy rule be affected
by the upper bound. Using a finer grid over the same range had little effect on our results but

increased the computational costs significantly.

The Convergence Criterion
To make use of the algorithm provided earlier for finding an approximate solution to an
optimality equation, we must first define our measure of difference, D, to be used in the convergence

criterion. We define D to be

D(v,w) = max |[v(}) - w(D]/v()|,

where v(i) is the i® element of the vector v. For our calibrated economies this measure of difference
is well-defined since the return function is bounded above by a strictly negative number.

The motivation for this measure of difference is the following. First, a property of our
economies is that scaling the unit of account by A results in the solution to the optimality equation
being scaled by A\*3-¥). With our measure of difference the number of iterations required to meet
the convergence criterion is invariant to such scalings. Second, percent changes are economically

meaningful statistics.
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The Algorithm

Next we provide details on how we implement the algorithm. In Step 1 we chose e = 1.0 X
10 and k = 20. We found that the policy rules had converged well before the convergence
criterion was met.

Steps 2 and 3 in the algorithm compute an initial value function v which satisfies T(v) =
v and delivers this v and an initial policy rule = to Step 4. We experimented with three different
procedures for computing this (v,7) pair. These procedures are ranked by the total computational

time required to approximate the solution to (I1.5).

* The slowest procedure is to set n = 0 in Step 2. In this case the choice of r is irrelevant.

® A faster procedure is to select a “reasonable” 7 and set n = 1,000, where “reasonable”
was determined by the economics of our problem.

e We found that a still faster procedure is the following. First we used our algorithm with
e = 1.0 X 10° k = 20, and n = 1,000 to find an approximate solution to a more
restricted problem, that is, a problem with a smaller constraint correspondence. Search
costs in the maximization steps are relatively small for the more restricted problem. We
then used the approximate solution to this restricted problem along with its approximate

optimal policy rule as the (v,w) pair delivered to Step 4. This v satisfied T(v) = v.

Two Computational Insights

We exploited two insights to reduce the computer time required to approximate the solution
to the household’s optimality equation. First, the Markov chain on (s,z) has the property that
Pr[s’ € {1,2}|s = 3] = 0. Because of this property, the optimality equation has a special structure.
Evaluating v(a,k,3) requires only the value function of the retired households (s = 3) and does not

depend on the value function of the working-age households (s € {1,2}). We exploit this fact in
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our algorithm. First we compute the value function of the retired households. We then compute the
value function of the working-age households, which requires the already computed value function
of the retired households. Using this two-step procedure rather than the straightforward one-step
procedure reduced the computer time required to solve the optimality equation by 32 percent.

The second insight was to recognize that the return function is evaluated many times when
computing T(v). We tabulated the values of U(c,k’,7-n,s) for each (k’,n,s) triplet over a fine grid
on c. This allows us to replace a function evaluation with a linear interpolation of grid
points—computations which require significantly less computer time than evaluating the function.
We make the c grid fine enough so that our results are unaffected by using this approximation to the
utility function. Our grid on ¢ has 10,000 evenly spaced grid points in the interval [0.00001, 3.0].
Using this tabulation procedure rather than computing the utility function directly reduced the
computer time required to solve the optimality equation by 75 percent.

Given that F(n,a,k,a’,k’,s,z) is defined over a finite set, an alternative procedure which
reduces search costs even further is to tabulate F over all feasible points. This procedure was not

practical due to excessive storage requirements.

The Banking and Government Policies

The values of aggregate quantities including the values of the candidate banking and
government policies can be computed given a distribution over household types, y, an economy-wide
shock, z, and the previously computed household policy using market-clearing conditions, equations
(24) through (Zé). For the banking policy, £,(y,z) and dy(y,z) are computed using equations (26)
and (28). Since we only consider ecdnomies with «(z) > 0, the bank’s problem implies that r,(y,z)
= p(z)dy(y,2). Since bank profits are zero, by(y,z) = dy(y,2) - 1,(y,2) - £,(y,2). For the govern-

ment policy, g(y,2), by(y,2), and r(y,z) are computed using equations (24), (25), and (27).
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The Law of Motion for the Measure of Agent Types

The final candidate element is the law of motion for the measure of agent types. We explain
how to simulate this law of motion to generate aggregate time series. At the beginning of any
period, let y denote the distribution of households across types (a,k,s) and let z denote the current-
period realization of the economy-wide shock. Let a prime (') denote next period’s value, so that
y' and z' are next period’s distribution of households and economy-wide shock, respectively. Note
that y has the property that y(a,k,4) = 0 (that is, there are no dead households). In computing next

period’s distribution, y’, we will make use of an intermediate distribution §.

Step 1. Computing z'.

Draw z' according to the probabilities m,(z'|z) using a random number generator.

Step 2. Computing 9 from y.

Algebraically, we evaluate

@K = 3 yak9ns'|sz),

a,k,sEB@’,k',z)

where

B(@a'k',z) = {(ak,s): a' =a'(ak,s,z), k' = k'(ak,s,z)}.
Computationally, this is done as follows:

Stage 1. Set ¥(a,k,s) = 0 for all a, k, s.
Stage 2. For each (a,k,s), do

a’' = a'(a,k,s,z)

k' = k'(a,k,s,z)

For each s’, do
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9@’ .k',s") = 9@’ k', s") + 7 (s'|s,2)y(a,k,s).

In general §(a,k,4) # 0, where ¥ can be interpreted as the distribution of household types next

period before the dead households are replaced with an equal measure of newborn households.

Step 3. Computing y’ from ¥.

Compute dead = Y §(a’ .k’ ,4).

a’k’
Sety'(a’,k',s’) = 9(@’,k',s") forall a’, k', s'.
Sety'(@a’,k',4) =0 forall a’, k.

Set y'(0,0,s") = ¥(s") dead + y'(0,0,s") fors’ € {1,2}.

In Step 3 we use the fact that newborn households all enter with a = k = 0. The probability that
a household is born in state s’ is given by ¥(s’), where ¥(s") = 0 for s’ € {3,4}. This fits in with

the notation in the paper as follows:

Y(s')dead ifa’' =0,k'=0

ke 0 otherwise

3. Testing Whether the Candidate is an Equilibrium

In this section we test whether the candidate price processes and the candidate allocation
computed in the previous section are an equilibrium for the policy arrangement. If an equilibrium
exists for the policy arrangement, then the computed candidate is the unique equilibrium. The
candidate is an equilibrium if the stochastic process on government consumption, g(y,z), is non-
negative with probability one. When n, = 1, the case with no aggregate uncertainty, this condition
can be verified through simulation since the equilibrium path of an economy converges to a unique

steady state with a fixed distribution of household types. For n, = 2, the process on g is not
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deterministic. In theory one would need to check that g(y,,z,) remained nonnegative for all possible
paths for z. In practice we selected a diverse set of z paths and then checked that g(y,,z,) remained
nonnegative for all paths in this diverse set of paths. Included in this set were paths which seemed
most likely to make g negative, such as paths where z is constant for many periods and then changes
value. For the experiments reported in the paper, all of the z paths considered resulted in g(y,,z,)

being much larger than zero for all t.

4. Computing the Welfare Effects of Changing Policy Arrangements

In this section we describe our procedure for computing the welfare effects associated with
switching from one policy arrangement td another. First, we describe how we compute household
wealth. We then explain how to compute the household’s utility value of private and public
consumptions for a given policy arrangement. Lastly, we explain how to compute our aggregate
welfare measure M, and we describe our procedure for décomposing the welfare effects of a policy

switch into public and private effects.

Household Wealth
Computing household wealth relies upon a method for computing our measure of the human

capital of a household, h(s,z). Since equation (31) can be written recursively as

h(s,2) = w(s,z)o(s) + B Y =l(s',z")|(s,2)]h(s',z"),

we computed an approximation to h by simply plugging in an initial guess h, and iterating to obtain
a sequence of h,’s that converge to h. Note that h(s,z) = 0 for s € {3,4}. W(a,k,s,z) is computed

using (30).
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The Utility Value of Private and Public Consumptions

The household’s utility value of private consumptions, which we denote v;, under a given
policy arrangement is given by the value function solved for in the household’s dynamic program-
ming problem. Computing the household’s utility value of public consumptions, which we denote
v,, is more complicated because it depends upon the current and future distributions of y. We
computed an approximation to v,(s,y,z|7). We describe the procedure used to approximate

Vo(s,¥,z| ) in four steps.

Step 1. Computing the sequence g, = E[g,(y,2)|Y4: 20T
Leti = (a,k,s). Let (yy,zy) denote the current aggregate state and = the policy arrangement
given the initial economy-wide state (yy,z,). Let x,(i,z) denote the expected measure of
households of type i with economy-wide shock z at date t. We compute x,,, from x, in two
stages using an intermediate vector &, where % can be interpreted as the expected distribution
of household types in period t + 1 before the dead households are replaced with an equal
measure of newborn households. We define x, as follows:

yo) ifz =z,

S PRy

Stage 1. Computing £ from x,.
Set (,z) = 0 for all i, z.
For each (i,z), do

a’' = a'(i,z)
k' = k'(i,2).
For each (s',z'), do

R(3i',2") = R({',2") + =[(s',2")|(5,0)]%,3,2).
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Stage 2. Computing x,,; from %.

Compute D(z') = Y R(a',k',4,2"), for all z'.
a"k

r
b

Set x,,,(i',2') = &(@',z") for all i, z'.
Set x,,,(a’,k',4,z') =0 forall a’, k', z'.

Set x,,,(0,0,5',z") = ¥(s")D(z’) + x,,,(0,0,s",z"), for all s, z'.

We require that the measure of households who die in state z’ be replaced by an equal
measure of households born in state z'.
Let g, = n(i,2)w(s,2) + x*(1,2) — c(i,2) — x’(,2) — d@L,2)mp — £(i,2)n ~ pk'G,z). We

compute a §, sequence from the x, sequence as follows:
& = Y g.x(0.2).
LZ
In work in progress by Alvarez and Fitzgerald, it is shown that § = §,.

Step 2. Computing the sequence ¢ (s) = E[o(s)|s = s,].
Since s follows a Markov chain, this is a standard exercise. We note that a computationally

efficient method to compute ¢,(s) is as follows. Let

v = prob[s’ € {1,2}|s € {1,2}].

v, = prob[s’ = 3|s = 3].
For s = 3,
¢(s) =7y, fort=0,1,2, ...

Fors € {1,2},
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ofs) =1 fort=0.

¢(8) = ¥19—1(8) + A—yys™! fort=1,2, ...

Step 3. Approximating E[g** Y|y, =y, z, = 2, 7J.
We approximate g¥@~¥ with a first-order Taylor series about §,, go!™¥ = goll=9

a(l—-y)g*t~—¥-1(g,—~5). Consequently,

E[g:" P |¥o,20,7] = Y

since E[g,—8,|y0,20,71 = 0.

Step 4. Computing an approximation of v,(s,y,z| ).

Notice that we can rewrite our definition of v, in (32) as
t 63 1-9¥)
V2(S,y,Z|7l') = E B -(T—'_lp) E[U(St) I SO]E[th‘ ‘ IYO:ZO’W]
t

since o(s,) and g, are independent for our calibrated economies.

Using the results from Steps 1-3 above, we have

Since 8 < 1 and the remaining elements in the sum are bounded, this sum converges. We

compute I7_o88,/(1—¥)]¢(s)8:" ¥ for a large T.

., The Welfare Measure
Finally, we describe how to compute our measure of the welfare effects associated with

switching from one policy arrangement to another. We also describe our procedure for decomposing
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the welfare effects into the effects due to changes in private consumptions and the effects due to
changes in public consumptions.
To start, let m, denote the current policy arrangement, (y,z) the current aggregate state, and

; the alternative policy arrangement. We make the following definitions:

i = (ak,s)
W(i,z) = a + k + h(s,z)
V(i,z,y|1r) = Vl(i,ZI’R') + Vz(S,Y,Z’W)

. Ve(1—=4)
V(I,Z,Y ’ 7!'1)}

N2,y | mo,m) = [’w—ym
b ot 0

The welfare measure of the effects of a switch from policy arrangement m, to =, is the

wealth-weighted average of A(i,z,y| mo, ;) — 1, and is denoted by M.

Y. WaA2y0MNGzy | 7m) — 1]

M(y,z,m,m;) = Y. Wa.2y0)

To get a sense of how much of our welfare measure M is due to changes in private consump-
tions and how much is due to changes in public consumptions, we define a method of decomposing

the effects. We define our private welfare measure, M,, as follows:

[Vl(i;Z,YIﬂ'l) - Vl(i,Z,Y|7i'0)]
[VG,z,y|m) — V(,z,y|7p]

Il(i,Z,Y, 71'1, 71-0) =

Y WALOyOMNGzY) | mpm) — Lud,zy, 7,7,
Y. Wa,2y0) '

M,(y,z,7p,1y) =

The public welfare measure is defined by replacing v; with v, in the definition of .
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