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I. Introduction

This paper presents an analysis of the automobile insurance market.
Interest in this topic, while far from new, has certainly intensified
recently. Beginning with Proposition 103 in California, and since spreading
to Pennsylvania, New Jersey and elsewhere, some dramatic and controversial
policies are currently being debated and implemented.1 Public concern over
auto insurance and the prospect of these and other policy interventions
would seem to warrant an extended economic analysis.

The main issue 1is price; but the problem is paradoxical, in that
premiums are exorbitant in some places and very much lower in others.
According to the Insurance Information Institute (1989), "“Although there are
a few places where auto insurance affordability problems are truly a
statewide phenomenon, it is more commonly a problem in particular cities, or
even in particular neighborhoods. ... It is a problem in Miami, but not in
Jacksonville, in Los Angeles but far less so in San Diego and San Jose. The
problem 1is severe for many 1insureds in Baltimore, Boston, Chicago,
Cleveland, Detroit, Newark, New York City, and Philadelphia. Yet it is far
less extreme for most drivers, for example, in Columbus, Dallas, Houston,
Indianapolis, Memphis, Milwaukee, Nashville, and Seattle" (p. 3). We

document this in Table 1, which presents premiums for four sample policies,

1. California’s Proposition 103 includes: (i) 20% reductions, and a
temporary freeze, in premiums below their November 1987 level; (ii)
restrictions on the use of geographic rate setting; (iii) mandatory 20%
discounts for good drivers; (iv) restrictions on insurers’ ability to cancel
or not renew policies (see The Los Angeles Times, May 5, 1989, pp. 1, 28, 30
31). In Pennsylvania, a law was passed July 1, 1990 requiring companies to
roll back rates as much as 22%, and some additional proposals under debate
include various forms of no-fault insurance, and having a single insurer
underwrite all policies in Philadelphia (see The Philadelphia Inquirer, Feb.
6, 1990, The Wall Street Journal, Feb. 22, 1990, p. Alé and The New York
Times, Sept. 3, 1990, p.10).



as well as some other information, for twenty-seven local markets across the
country.2

As an example, consider a 45 year-old married male with a clean record,
driving a 1987 Chevrolet Caprice (Sample Premium A - see the notes to the
table for more details). He would pay $516 annually in Milwaukee and #$570
in Columbus, compared with $1679 in Philadelphia and $1925 in Los Angeles.
For a couple with two teenage sons, owning the same Chevy as well as a 1982
Buick LeSabre (Sample Premium C), the cost is $1803 in Milwaukee and $1944
in Columbus, as compared with $5513 in Philadelphia and $6394 in Los
Angeles. Although these cities are extreme, the overall variability in
premiums in the table is remarkable. We add that this is cannot simply be
attributed to differences in regulations or other factors across states,
since statewide average premiums (not shown) vary much less, as do premiums
across cities in the same state in Table 1. To illustrate this further,
Table 2 presents sample premiums from another data source for six cities
within Pennsylvania.

How could rates vary so much across cities? Several potential

explanatory variables suggest themselves immediately.3 It is obvious that

2. We constructed the premium data from three sources: the publication "Auto
Insurance Issues," by the Insurance Information Institute (1989), and two
data sets provided to us by the AEtna and State Farm insurance companies.
Our three samples did not overlap perfectly, so we combined them (adjusting
for differences in means in the samples) to get one observation on each
policy for each city. The demographic and theft data are from the
Statistical Abstract of the United States. We constructed the variable
UM/BI, which is the ratio of uninsured motorist to bodily injury 1liability
claims, by combining data from two surces: the AIRAC publication "Uninsured
Motorists"” and the ISO-NAII publication "Factors Affecting Urban Auto
Insurance Premiums" (again adjusting for differences in means). We chose
the cities in the sample because they are ones for which we were able to get
the information on UM/BI, which is an important variable in what follows.

3. High repair, medical, legal, and other costs contribute to high premiums,
of course; but it is unlikely that these factors could differ enough across
cities to explain the observed variability (although we did not have the



population density, also reported in Table 1, should be important since it
is an indicator of accident frequency. Also, one would think that high
vehicle theft rates add to the cost of insurance, although we point out that
Philadelphia’s theft rate is rather low in both Tables 1 and 2. Without
denying all relevance for these factors, we wish to focus on another factor
here — the uninsured driver problem. Table 3 presents indemnities (dollars
of insured loss per auto between 1983 and 1987) on several types of coverage
for a subsample of our cities for which we had data.4 Observe that the
indemnity for uninsured motorist (UM) coverage in Philadelphia is $110, much
higher than any other city in the sample. This is also over 10 times the
Pennsylvania state average. A complimentary piece of information in Table 2
is that the UM claim frequency in Philadelphia is 20 times greater than
Pittsburgh.

Our thesis is that the high price of auto insurance can be attributed
(at least in part) to the large number of uninsured drivers in some

localities, while at the same time, the large number of uninsured motorists

data to check this carefully). We also think it is unlikely that excess
profits due to collusion among insurers can explain this variability, since
the same companies serve many of our cities and it is difficult to imagine
them colluding in one local market but not another. In any case, on the
suggestion of a referee, we compared the ratios of premiums to idemnities,
which proxies for profits, across cities. The correlation between this
measure of profitability and price was -.16, which tends to support our view
that price variability is not the result of variability in profits.

4. The types of coverage are as follows. BI (bodily injury liability) and
PD (property damage liability) cover losses inflicted on third parties. PIP
(personal injury protection) covers medical payments, lost wages, and so on,
for the insured. COMP (comprehensive) covers damages caused by theft, fire,
vandalism, etc. UM (uninsured, and underinsured, motorist coverage) pays
for damages that you would be entitled to receive, less any sums that you
actually do receive, from the owner or operator of an uninsured vehicle. We
did not have data on collision coverage, which pays damages to a car
resulting from colliding with another vehicle, a telephone pole, etc. A
textbook such as Rejda (1986) provides more details.



can be attributed (at least in part) to the high premiums. The basic idea
is simple. When an uninsured or underinsured driver causes a loss, the
damaged party is forced to collect from his own policy. Hence, his
insurance company must charge a higher premium in order to earn a given rate
of return, and this premium can be high enough to make driving without
insurance the best option for some drivers. A key assumption below will be
limited 1liability, or a bankruptcy constraint. Without this constraint, the
unique equilibrium has all drivers fully insured; but 1limited 1liability
introduces a non-convexity for low wealth (although not for high wealth)
individuals that potentially allows equilibria with some uninsured drivers,
and high, yet actuarially, fair premiums. Our model predicts that, given
two similar cities, one -can can end up in an equilibrium with high numbers
of uninsured drivers and high premiums, while the other can end up with
lower premiums and few uninsured drivers. Both accident frequency and
income distribution variables are impoftant in determining which outcome is
more likely to occur.

Table 1 also provides estimates of the fraction of uninsured drivers in
each city. These estimates are constructed by dividing the number of UM
claims by the number of BI liability claims. This is, more accurately, a
measure of the number of accidents caused by uninsured motorists, but it is
the standard way of estimating the fraction of uninsured drivers in the
industry (see AIRAC, 1989). For example, in Philiadelphia a surprising 38%

of motorists are uninsured.5 In Figure 1, we plot the price of each policy

5. This compares with a Pennsylvania state average of 16%, and a national
average of 13%. It has also been estimated that 30%4 of the registered cars
in Philadelphia are uninsured (see The Wall Street Journal, Feb. 22, 1990},
but this underestimates the fractlion of all cars that are uninsured because
a greater proportion of uninsured cars are unregistered, due to the fact
that it is illegal to regsiter without insurance in the Pennsylvania.



against the fraction of uninsured drivers; we also indicate which cities are
high or low density and high or low income (high income is greater than
$9909. per capita while high density is greater than 6,800 people per square
mile). Observe how five localities seem to lie to the northeast of the
others: Philadelphia, Los Angeles, Miami, the Miami Suburbs (actually, Dade
county excluding Miami and Miami Beach), and Detroit, although there is some
reason to suspect that UM/BI overestimates the fraction of uninsured drivers
in Detroit, due to a Michigan state law that makes it easier to file a UM
claim than a BI claim. All of these localities are high density, and all
are low income, except Los Angeles. However, a few very wealthy denizons of
LA raise average income and hide the fact that the city does have a sizable
low income population. It appears that in the data, as well as in our
model, high density and a large number of low wealth drivers are necessary
for markets to end up in equilibria with high prices and high UM/BI ratios.
The rest of the paper is organized as follows. In the Section II we
present our basic model, and prove the existence of an equilibrium. In
Section III we analyze welfare implications. We show that equilibria with
uninsured drivers are inefficient, and are Pareto dominated by full
insurance. For certain parameterizations, the model displays a coordination
failure, in that both an efficient full insurance equilibrium and
inefficient high price equilibria with uninsured drivers exist
simultaneously. In Section IV we discuss some of the recent policy measures

in light of our theoretical model. 1In Section V we conclude.6

6. A model that is in certain respects similar to ours is contained in
Keeton and Kwerel (1984), who also refer to some earlier literature. There
analysis differs from ours in several important aspects, however, some of
which will be discussed below. A different literature related to automobile
insurance tries to model price dispersion across insurers within a given
local market as a search equilibrium; see Dahlby and West (1986).



II. The Theoretical Model

There is a continuum of agents, called drivers, with a total population
normalized to unity. Each driver has the same von Neumann - Morgenstern
utility function U(-), that is twice continuously differentiable with U’ > O
and U” < 0. During the period under consideration, each driver is involved
in an accident with probability m > 0, and no accident with probability 1-=w
> 0. For simplicity, an accident in our model always involves two drivers
drawn at random from the population, and results in a loss of L for each, or
a total loss of 2L. In any accident, one of the drivers is unambiguously
and costlessly found to be at fault, each with equal probability. Thus, for
a given individual, with probability m/2 he is hit and with probability n/2
he hits someone else. Drivers are homogeneous except possibly for their
initial wealth, x. We assume X = L, but otherwise wealth can be arbitrarily
distributed across agents for now.7

A driver who is at fault in an accident is responsible, up to the
extent of limited liability, for the tota; loss of 2L, and must compensate
the victim either from his insurance or from his own wealth. If he has
insufficient resources to compensate the other driver, he pays what he has
and ends up with zero final wealth. When this limited liability constraint
is binding, the victim suffers a loss as well, and he can make a claim
against his own policy. We do not assume that uninsured motorist coverage
can be purchased separately, but that it is bundled together with a general
automobile insurance package. Although in some (not all) states it is

possible to buy insurance without UM coverage, the relevant consideration is

7. The analysis below assumes a particularly simple wealth distribution, but
some preliminary results are actually easier to develop without specifying
this distribution at all.



that it is impossible to buy UM coverage without liability. For this and
several other reasons, we think that it is better to assume that all types
of coverage are bundled together.8

We want to capture strategic interaction in the automobile insurance
market as a simple game. A pure strategy is an amount of coverage, qe[0,1],
and a mixed strategy is a probability distribution over pure strategies.9
The price per unit of coverage is denoted by p, and will be determined below
as part of the equilibrium. Insurance pays on all damages the policy holder
causes plus any loss he suffers from being hit by a driver with resources
insufficient to compensate him. For example, suppose driver A with wealth x
and coverage q hits driver B. Then A’s insurance pays him q times 2L,
leaving him with x’ = x-pgq-L+2Lq dollars, and from this he must reimburse B.
If x’ is less than L, however, A pays what he can and B makes a claim
against his own policy for L-x’. When choosing his strategy, each driver
takes as given the price p and the strategies of others. The amount of

coverage purchased by other drivers will be represented by Q, where Q can

8. Keeton and Kwerel (1984) assume (unrealistically, they admit) that UM
coverage can be purchased separately from liability. 1In this case, there is
even a greater potential for market failure, as agents who can purchase UM
coverage alone have even less incentive to acquire liability coverage. As
suggested by Keeton and Kwerel, this may help explain why UM coverage cannot
be purchased without liability in the real world. Nevertheless, we will
show that there is still a potential for market failure when coverage must
be bundled, and that this market failure interacts with premiums in a way
that is consistent with the empirical observations discussed in the
introduction. Further, in reality there is substantial interaction and
subsidization across types of coverage, and the presence of uninsured
drivers will affect the cost of medical and collision as well as uninsured
motorist coverage. All of these considerations, as well as simplicity,
suggest that our assumption is a good one for the purposes at hand.

9. Later, we also discuss the case where q is restricted to {0,1} - i.e.,
either no insurance or full insurance. That model is slightly simpler to
analyze, but some interesting insights come out of the more general case.
The reason we need to consider mixed strategies is that pure strategy
symmetric equilibria do not always exist.



differ across agents because of their initial wealth or because they are
using mixed strategies.

We now derive the expected utility of a driver with initial wealth x
and coverage . With probability 1-w, he is not involved in an accident and
enjoys final wealth x-pgq. With probability /2, he hits someone and is left
with final wealth max{x-pq-2L(1-q),0}, which cannot be less than zero due to
the limited 1iability constraint. Finally, with probability m/2, he gets
hit, implying final wealth x-pq-(1-q)(L-R), where R is the amount he
recovers from the other driver, and is random because the other driver’s
wealth X and coverage Q are random. If X-pQ-L+2LQ = L, the at-fault driver
fully compensates and R = L; otherwise, the at-fault driver goegs bankrupt

and R = X-pQ-L+2LQ. Hence,
L - R =1L - min{L,X-pQ-1+2LQ} = max{0,-X+pQ+2L(1-Q)}.
Combining terms, expected utility can be written

v(g,Q,p) = (1-m)U(w-pg) + %U[max{w—pq—ZL(l—q),O}]
+ ZEUIW-pq-(1-q)max{2L(1-Q)-X+pQ, 0}1,
where E denotes the expectation over X and Q.
The next step is to determine the actuarially fair insurance premium by

equating revenue and expected indemnities. This readily yields the implicit

pricing formula

p = g(ZL) + gg(L—R) = L + Emax{0,-X+pQ+2L(1-Q)},



where, again, E is the expectation over X and Q. The first term on the
right-hand side is the part of the premium due to the possibility of causing
an accident, while the second term is the part due to the possibility of
being hit by an uninsured or underinsured driver. Let p = p(Q) be the
solution to this equation. Notice that p is minimized by setting Q = 1 for
all drivers, which implies p = nl, and is maximized by setting Q = 0 for all
drivers, which implies p > nL as long as there is positive probability that

X < 2L. Imserting p into v(:) yields the payoff function

V(q,Q) = vlq,Q,p(Q)].

Let q’ = (2L-x)/(2L-p) be the amount of coverage at which the limited
liability constraint is just binding for an individual with wealth x — i.e.,
the point at which x-pq’-2L(1-q’) = 0. For any driver with wealth x = 2L,
limited liability is never a relevant consideration, even with g = 0. On
the other hand, if x < 2L, then q < q’ implies limited liability will bind
whenever at fault. These considerations imply the payoff functions satisfy
the conditions in the following lemma and illustrated in Figure 2 (the proof

follows directly from differentiation and is left to the reader).

LEMMA 1: Fix Q and therefore p = p(Q). Then we have:

(a) For x = 2L (high wealth drivers), V(q,Q) is strictly concave in q

on [0,1] and has a maximum at q = 1.

(b) For x < 2L (low wealth drivers), V(q,Q) is striectly concave in q on
[0,9’] and has a local maximum at some q.€[0,q’), and is also strictly
0

concave in q on [q’,1] and has another local maximum at q = 1.



REMARK: The local maximizer qy may be strictly positive or zero, although it
is possible to give sufficient conditions under which q0 = 0 (see below).
Also note that, if p is sufficiently high, a low wealth driver may not be
able to afford g = 1, and in this case we can show that 9 is in fact the

global maximizer subject to the budget constraint pqg = x.

Part {(a) of Lemma 1 tells us that a high wealth driver’s global maximum
occurs at q = 1, irrespective of Q, and therefore full insurance is his

dominant strategy. This immediately implies the following result:

THEOREM 1: If x = 2L then g = 1 is a dominant strategy. If x = 2L for all
agents then full insurance is a dominant strategy equilibrium, and therefore

the unique Nash equilibrium. In this equilibrium, p = 7nlL.

This indicates the sense in which low wealth agents are important: if
all drivers have enough wealth so that limited liability is never binding,
then the only equilibrium has no uninsured. drivers and a low price. Hence,
from now on, we assume that there is some positive fraction of the
population @ that each have wealth x = w, where L = w < 2L. The rest of the
population each have wealth x = 2L, and since they will always use their
dominant strategy, we can concentrate on the low wealth drivers. As
indicated by part (b) of Lemma 1, low wealth drivers choose q = 1 if V(1,Q)
> V(qO,Q), they choose gq = 9 <1 if v(1,0) < V(qO,Q), or they may randomize
if v(1,Q) = V(qO,Q). The important part of this observation is that these
agents, if they randomize at all, will only randomize between the two points
9 and 1. Hence, although a mixed strategy is generally any probability

distribution over [0,1], any mixed strategy that a low wealth driver might

10



choose can be summarized here by the pair (q0,¢), where 9 is the maximizer
of V subject to g < q’, and ¢ is the probability assigned to q = 1.10

We now prove that there always exists a symmetric Nash equilibrium in
mixed strategies. However, rather than having each agent randomize by
choosing a probability ¢ of choosing q = 1, it would be equivalent to have a
fraction ¢ of the low wealth drivers choose g = 1, while the remainder 1-¢
choose q = 95- Hence, our proof can alternatively be interpreted as

establishing the existence of an equilibrium in pure but non-symmetric

strategies.

THEOREM 2: There always exists a symmetric mixed strategy equilibrium, or

equivalently, a non-symmetric pure strategy equilibrium.

PROOF: Suppose that the 1-68 high wealth drivers choose their dominant
strategy of Q = 1, while the © low wealth drivers choose Q@ = 1 with

probability & and Q = Q, < 1 with probability 1-9%, and consider the best -

0
response problem of a typical low wealth agent. With some simplification,

his payoff function can be written

V = pu(w-p) + (1-<p)[<I>v(qO,1,p) + (1-2)v(qy.Q,,pP)1,

]

where p is given by p = nL + .Sne(1-@)max{ZL(l—Qo)-w+pQO,O}, or

o)
It

2L+9(1—®)[2L(1-QO)-W]
n-maX{L, }.
Z-neQO(l—é)

10. The key thing here is that strategies can be represented by a pair of
numbers belonging to [0,1I1x[0,1], a convex, compact subset of R". This
makes the necessary fixed point argument relatively straightforward.

11



A symmetric Nash equilibrium is a fixed point of the correspondence
p: [0,1]2 > [0,1]2, defined by letting (qo,tp) = p(QO,é) maximize V. Now p is
non-empty by the Wierstrauss Theorem and upper semi-continuous by the
Theorem of the Maximum. It is convex valued, because p(QO,@) will either be
the point (qO,O) or the point\(qo,l) or the set {q = dg» 0 =¢ = 1}, all of

which are convex. By Kakutani’s Theorem, p has a fixed point. Q.E.D.

IIT. Analysis of Equilibria

In the previous section we established the existence of equilibrium.
There are two possible types of equilibria: when q = 1 for all agents, we
have p = nl. and we say that we are in a low price equilibrium with full
insurance; when q < 1 for a positive fraction of the low wealth drivers we
have p > 7l and we say that we are in a high price equilibrium with
incomplete coverage. Below we will provide examples demonstrating that both
are possible, and that for some parameterizations both exist simultaneously.
Prior to this, we establish some basic welfare results: full insurance for
all drivers 1is Pareto optimal, whether or not it is an equilibrium; high
price equilibria are Pareto dominated by full insurance; and multiple

equilibria can be Pareto ranked when they coexist.
THEOREM 3: Full insurance (q = 1 for all drivers) is Pareto optimal.

PROOF: Since agents are risk averse, any optimal allocation x’ must provide
them with nonstochastic final wealth, so there is no loss in generality to
restricting attention to nonstochastic allocations. To be feasible, the sum
of final wealth over agents cannot exceed the sum of initial wealth minus

the aggregate loss, [x’ = [x - wL. The full insurance allocation is X’ = x

12



- nl.. For an allocation x” to Pareto dominate this, it must satisfy x” = x’
for all agents with strict inequality for some set of agents with positive

measure. This implies [Jx” > [’ = fx - nL and violates feasibility. Q.E.D.

THEOREM 4: Any equilibrium with incomplete insurance, and therefore p > =nL,
is not Pareto optimal, and can be dominated by full insurance, at least if

we have access to lump sum taxes and transfers.

PROOF: In any equilibrium, high wealth drivers set q = 1, while low wealth
drivers set q = 1 with probability ¢ and q = 9 < 1 with probability 1-¢.
Consider an equilibrium with ¢ < 1 and p > nL. If ¢ > O, then low wealth
drivers get the same payoff from q = 9 and g = 1, and that payoff equals
U(w-p). As this is strictly less than U(w-nlL), they strictly prefer q = 1
at the full insurance price nL. High wealth drivers also obviously prefer a
lower price. Therefore, all mixed strategy equilibria are Pareto inferior
to full insurance at the lower price.

The case of a pure strategy high price equilibrium, ¢ = 0, is more
complicated. Let v(q) = V(q,q) be expected utility for low wealth drivers

when they all choose q,

v(q) = [1-.5m(1+68) 1U(w~pq) + .5nUlmax{w-pg-2L(1-q),0}]
+ .5m10U[w-pq-(1-q)max{2L(1-q)+pgq-w,0}],
where p = p(Q). Suppose they all choose q = 9 < 1. By Lemma 1, a5 <qgq =
(2L-w)/(2L-p), which implies that the second term is .5nU(0), and also that

p = [2aL+mo(2L(1-q)-w)]1/(2-w0q).

Now consider a transfer T = (p-nL)(1-6)/6 to each low wealth driver,

13



financed by a lump sum tax of p-nL. on each high income driver. By
construction, high income drivers are indifferent between paying p or paying
nL plus the tax. If we impose q = 1 on all low wealth drivers, after

simplification their final wealth can be computed to be

x’ = [1-.57(1+0)] (w-pq) + .5w8{w-pg-{1-q)[2L(1-q)+pg-wl}.

After some algebra, Jensen’s inequality implies v(q) < U(x’). Hence, low
income drivers strictly prefer q = 1 along with this tax - transfer scheme

to the equilibrium with ¢ = 0. Q.E.D.

Several comments are in order concerning these results. First, note
that because high wealth drivers are always fully insured, the presence of
underinsured drivers is essentially a lump sum transfer away from them -
that is, p rises, but because it is still actuarially fair, high wealth
drivers still choose q = 1. Inefficiency arises in an equilibrium with ¢ <
1 because low wealth drivers take socially.unnecessary risks. Second, note
that all mixed strategy (or non-symmetric) equilibria are Pareto dominated
by full insurance without the need for any transfers, while pure strategy
equilibria with q = 9, for all low wealth drivers can only be dominated in
general with transfers. Finally, note that Theorem 4 says full insurance
dominates any high price - incomplete coverage equilibrium (assuming the
necessary transfers are made), even if full insurance is not an equilibrium
itself. In other words, low wealth drivers would want mandatory full
insurance at the low price imposed on them collectively, even if they would

individually choose q = q. < 1 at this price.

0

14



THEOREM 5: Pure and mixed strategy equilibria are inversely Pareto ranked by
price. If full insurance is an equilibrium, then it Pareto dominates all

other equilibria.

PROOF: Suppose there are two pure strategy equilibria, one with q = 9 for
all low wealth drivers and price Pgs and another with q = q, and price p,-

From the actuarial pricing formula, 9 > 9 implies p1 < Pg- Therefore,

v(qo,qo.po) < v(qo,ql,pl) s v(ql,ql,pl)-

The first inequality follows because sa given driver is better off when
others have more insurance and also when the price is lower, while the
second follows by the assumption that 9 is an equilibrium, and hence a best
response. This shows that low wealth drivers prefer q and P, to 9 and Py
As high wealth drivers obviously also prefer the low price equilibrium, it
Pareto dominates the high price equilibrium.

A very similar argument establishes that any mixed strategy equilibrium
with price p > nl. is dominated by a full insurance equilibrium with price
nL, and that any two mixed strategy equilibria also can be ranked inversely
by price. Hence, if full insurance is an equilibrium then it dominates all

other equilibria. This completes the proof. Q.E.D.

We emphasize that there are two distinct types of "bad" outcomes that
are possible in the model. First, there could be multiple equilibria, and
we could get stuck in an inefficient high price equilibrium with
underinsured drivers even though the low price - full insurance outcome is

also an equilibrium. This is a coordination failure, in the sense that all

15



low wealth drivers would be happy to choose g = 1 if only p were lower, and
p would indeed be lower if only they would all choose q = 1.

Second, it may be that full insurance is not an equilibrium at all, and
low wealth drivers would not choose q = 1 even at the low price. In this
case, everyone agrees that they would all be better off if they all had
complete coverage, but there is no way to get low wealth drivers to
voluntarily purchase full insurance at an actuarially fair price. Although
both outcomes are inefficient, the phenomena of multiple equilibria is
perhaps especially interesting here, in that it may help to explain the
large observed differences in premiums across seemingly similar cities.

To pursue this further, it is wuseful to decompose the effect of
underinsured drivers on individual payoffs into two components - a risk
effect and a price effect. The risk effect captures the impact of a change
in the coverage of low wealth drivers, say QL’ holding p constant (which
affects expected utility because it increases your loss when hit by a low
wealth driver). The price effect captures the impact of a change in p

holding Q, constant. The total impact of Q. on expected utility is
L L

aviq,Q,p(Q)] 48v(q,Q,p)

= +
Q. Q. ap Q.

av(q,Q,p) 8p(Q)

At g = 0, the price effect is zero (because you are uninsured) while the
risk effect is positive. At g = 1, the risk effect is zero (because you are
fully insured) while the price effect is positive. Hence, the risk effect
rotates the payoff function around V(0,Q) while the price effect rotates it
around V(1,Q), as shown in Figure 3.

In Figure 3, g = 0 is the best response when QL = 0; i.e., V(g,Q) is

maximized by choosing to buy no insurance when other low wealth drivers buy

16



no insurance and p is at its equilibrium value. Thus, no insurance for all
low wealth drivers is an equilibrium. Now consider changing QL from 0 to 1.
The pure price effect rotates the payoff function around its intercept, and
if it is sufficiently strong then V(q,Q) will end up being maximized at q =
1. The risk effect, however, counteracts this by rotating the payoff
function around its intersection with the vertical line through q = 1. If
the payoff function is maximized at q = 1 after both rotations, as shown in
the figure, then full insurance is also an equilibrium. Hence, for multiple
equilibria to exist, it is necessary that the price effect is large and the
risk effect is small.11

We now demonstrate by an explicit example that multiple equilibria can
actually arise. First, we make a simplifying assumption, by restricting q
to be either 0 or 1 (either no insurance or full insurance).12 Consider the

constant relative risk aversion utility function, U(x) = x(l—“)

/{1-a), and
for simplicity set w =L =@ = 1. It is not hard to show V(0,0) = V(1,0),
which means no insurance is an equilibrium, if and only if «a = oy and
V(1,1) = V(0,1), which means full insurance is an equilibrium, if and only
if « = «,, where oy = 1 - 1n(1-n)/1n(1-31/2) and @, =1 - In(1-n/2)/1n(1-u).
In Figure 4, the locus satisfying o = oy and the locus satisfying « = oy are

plotted in (m,a) space. For all points above the «, curve there exists an

11. In the language used by Cooper and John (1988), the price effect entails
a strategic complimentarity: when more low wealth drivers buy insurance the
price falls and this encourages more low wealth drivers to buy insurance.
The risk effect works the other way, however: when more low wealth drivers
buy insurance there is less need to be insured. Multiplicity requires the
net effect to be positive and large.

12. The restriction of g to be either 0 or 1 would actually be innocuous if
aV/8q = 0 at g = 0. A sufficient condition on parameters and the utility
function for this to hold is given in the working paper version (Smith and
Wright 1989).
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equilibrium with ¢ = 1 and p = wL, while for all points below the @y curve
there exists an equilibrium with q = 0 and p > nL. In the shaded region,
both exist simultaneously. For a given a, the q = 0 equilibrium is more
likely to occur when m is large. Also, multiple equilibria require both =

and @ to be large.
IV. Policy Implications

In this section, we consider some recent policy proposals in light of
our model. Automobile insurance reform has emerged as a central issue
recently, as discussed in the introduction, and the suggestions differ
widely. Some commentators appeal to the efficiency of free markets and call
for less regulation or— greater competition, while others seek stricter
control and legislated pricing. Others advocate a change in the
institutional and legal structure of the market, including a move to
no-fault insurance or a move to have one monopoly carrier. The theory
presented above has implication for all of these issues.

Concerning efficiency in laissez—fairé, our model demonstrates clearly
the possibility of market failure in the market for automobile insurance.
High price equilibria with uninsured or underinsured drivers can exist and
they are not optimal. Additionally, the existence of multiple Pareto ranked
equilibria demonstrates the possibility of a coordination failure. In this
case, it may well be that policy makers should focus simply on achieving
lower premiums, and price rollbacks like those legislated recently in
California and Pennsylvania may be all that 1is required. As long as full
insurance is an equilibrium, it is self-enforcing once achieved, and further

measures are unnecessary. When full insurance is not an equilibrium,

however, rolling back premiums will not eliminate underinsured drivers,
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since low wealth individuals would not purchase full coverage even at the
low price. 1In this case, rollbacks will only cause insurers to lose money.

Of course, the enforcement of mandatory full insurance would eliminate
the inefficiency.13 However, our results indicate that the enforcement of
mandatory insurance will need to be coupled with transfer payments to low
wealth drivers if we want to guarantee that it will Pareto dominate a high
price equilibrium. This is consistent with the view of some people, who are
reluctant to impose or enforce mandatory insurance laws because they amount
to "forcing many low-income drivers to choose between paying for food or
shelter and buying auto insurance" (see The Los Angeles Times, Sept. 2,
1990, p.A30). Of course, this equity argument is not necessarily valid. Ve
have shown that it is possible that forcing low wealth individuals to buy
insurance can, in and of itself, reduce premiums -— perhaps, although not
necessarily, to a level these same low wealth individuals are willing to
pay.

In addition to mandatory insurance laws, another institution designed

to combat uninsured driver problems is the .so-called "involuntary" insurance
market or "assigned risk" plan. When individuals cannot get insurance in
the normal market at a reasonable price (e.g., because they are high risks),

the state assigns them to insurers. Premiums are higher for such drivers,

13. Existing regulations in over half the states have some form of mandatory
insurance while the rest have some form of financial responsibility law,
although the minimum liability limits are typically very low. In any case,
legislating against the problem does not necessarily make it go away. The
Journal of American Insurance (1982) reviews mandatory insurance laws, and
summarizes the evidence as follows: "the sad fact is that while requiring
everyone to buy auto liability insurance coverage may look great on paper,
it just doesn’t seem to work in the real world. In states where these laws
have been tried, they have proven both difficult and costly to enforce.

And they don’t seem to be doing much to get uninsured drivers off the road."
(p. 20).
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but not high enough to avoid substantial underwriting 1losses in the
involuntary market, and other drivers end up subsidizing them. Although we
abstracted from differential risks, our model does have individuals who
cannot find insurance they find affordable at actuarially fair rates.
Consider the case where low wealth drivers choose q < 1 when Q = 1 and p =
nl. (so that full insurance is not an equilibrium). There will always be
some p between O and wl. such that they will voluntarily become fully
insured, but it will involve an underwriting loss of wlL-p per low wealth
driver. Nevertheless, if their number is small relative to high wealth
drivers, the latter will be willing to subsidize them rather than end up in
a high price - incomplete insurance equilibrium. This rationalizes a policy
of subsidized rates for low wealth in addition to high risk drivers.

Another policy option, and one that is often favored by the insurance
industry, is no-fault insurance. In a no-fault system each party in an
accident collects from his own insurer, and in a pure no-fault system
injured parties have no right to sue.14 Arguments for no-fault usually
revolve around transaction costs, especially the cost of 1litigation.
Arguments against no-fault typically concern incentive effects. In our
model there is a new argument in favor of no-fault. Under such a systen,
each driver is responsible for only his own loss, which eliminates the
impact of limited liability. It can be shown that full insurance at the low
price is the unique equilibrium under a pure no-fault system; with partial

no—-fault, there would still be a possibility of market failure, but

14. In the literature, pure no-fault means only medical expenses and 1lost
wages are covered, and not property damage or pain and suffering. Since
1971 about half of the states adopted some form of no-fault law (although
several have since been repealed). However, none have been pure systems,
and individuals always maintain some right to sue.
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presumably it would be reduced. Of course, we have abstracted from many of
the issues relevant to the no—fault debate, including both incentive effects
and transaction costs, but these implications of our model still seem
relevant.

Finally, some proposals call for one large insurer to cover the entire
market in cities like Philadelphia (recall footnote 1), and the model here
suggests that this also has some merit. Since high price equilibria are
suboptimal, economic rents are available. Suppose that instead of simply
setting actuarially fair premiums, an enterprising insurer tries offering a
lower p in order to capture these rents. Further, suppose that by beating
the going rate, he captures a fraction z of the market, where for simplicity
Zz is independent of the difference in prices.15 One can show that for z near
1 the strategy of lowering p will increase profit, while for sufficiently
small z, any p other than the equilibrium premium generates negative profit.
Thus, a single insurer will be able to circumvent the coordination failure
if and only if he 1is sufficiently large. A monopoly supplier introduces
standard problems, and may require regulation; but in the presence of a
multiple equilibria of the type studied here, there is at least one reason
for recommending one large rather than many small carriers.

The bottom line is that several of the policy recommendations that have
been under consideration recently can be rationalized here. Legislated
price roll-backs, subsidized Iinvoluntary insurance markets, and monopoly
suppliers can all be Pareto improving policies in this model. Perhaps on

the surface mandatory insurance laws seem the most straightforward idea, but

15. The variable z is meant to proxy for various factors that prevent an
immediate and complete capture of the market; these include search and
advertising costs, customer-brand loyalty, and so on.
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we reiterate that these are costly to enforce and are typically less than
completely successful. Additionally, they do not necessarily result in a
Pareto improvement over high price equilibria without transfer payments to
low wealth drivers. If a single policy recommendation was to be made, it
appears that a pure no-fault system looks best from the perspective of our
model, because it eliminates the externality entirely. We would prefer to
be somewhat cautious, however, about recommending any policy, as the model

has abstracted from many considerations that may be relevant.16
V. Conclusion

In this paper, we have demonstrated the possibility of market failure
in the automobile insurance market, in the sense of inefficient equilibria
with uninsured or underinsured drivers. We have also demonstrated the
possibility of a coordination failure, in the sense of multiple, Pareto
ranked equilibria. The model does not predict that the automobile insurance
market always ends up in an inefficient equilibrium; this is as it should
be, since many cities have reasonable preﬁiums and few uninsured drivers.
But we are not simply saying that "anything can happen" either. The
framework does indicate factors that tend to make the inefficient outcomes
more or less likely. Theorem 1 suggests that cities with mostly high wealth
individuals will be immune to uninsured driver problems.17 The example in

Section III suggests that the accident frequency has to be sufficiently high

16. To quote P.J. O’Rourke’s Holidays in Hell, "Half the world’s suffering is
caused by earnest messages contained in grand theories bearing no relation
to reality — Marxism and No-Fault Insurance, to name two."

17. Not surprisingly, uninsured drivers do tend to be low wealth individuals.
See AIRAC (1989) and The Journal of American Insurance (1982).
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for a high price equilibrium to exist. Hence, we expect that cities with
high income and low density are unlikely to end up in a bad equilibrium. We
refer again to Figure 1, which shows that low income and high density are
necessary, but not sufficient, for a city to appear in the northeast part of
the chart.

How much of the high premiums observed in these cities can be
reasonably attributed to wuninsured drivers? Unfortunately, one cannot
simply look at UM premiums for the answer. In Philadelphia, for example,
basic UM typically costs only around 10% of the total premium, but this does
not reflect the true actuarial cost, as each $1 of UM premiums results in
$1.33 of losses that must be covered by other parts of the policy. More
significantly, UM coverage typically applies only to bodily injury and not
property damage. Damage to one’s car is covered by collision, which is paid
regardless of fault - if you cause the accident your insurer pays you, while
if you get hit, you can collect from your own insurer, who will then attempt
to collect from the at fault party or his insurer. The presence of
uninsured motorists therefore undoubtedly .increases collision premiums. A
similar argument applies to personal injury or medical protection as well.

Hence, the true impact of the uninsured on the cost of automobile
insurance will exceed the 10% of the premium that goes to UM coverage. If
we assume that uninsured drivers have roughly the same effect on the cost of
personal injury and collision coverage that they have on the overall
premium, then we can use the data in Table 3 to form an estimate of this
effect (as a practical matter, ignoring personal injury protection and
collision losses is our only alternative, since we have only sketchy data on
the former and none on the latter). If we divide the indemnity for UM

coverage by the sum of the indemnities for BI, PD, COMP and UM coverage,
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this provides an estimate of the fraction of these losses that are due to
uninsured motorists and, under our maintained hypothesis, also an estimate
of the total effect. For 12 of the 15 cities in the table, the estimate is
no greater than 10%. For Los Angeles, the estimate is 11%, for Miami, it is
19%, and for Philadelphia it is 22%. Interestingly, the recent Pennsylvania
legislation discussed in Section I rolled back rates exactly 22%. Perhaps

they got it right.
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TABLE 1: CITY DATA

Sample Premiums

City Thefts Income UM/BI

Y
[o]
o]

A B C D
Baltimore 976 8647 .236 953 2572 3211 1316
Chicago 1 1315 9642 .175 1204 3446 4122 2052
Chicago Sub 1 - o642 .108 749 2199 2726 1152
Cleveland 1917 8018 .228 907 2567 3043 1523
Cleveland Sub —— 8018 .150 635 1808 2187 972
Columbus 626 9909 .109 570 1637 1944 885
Detroit 2732 8852 .287 1627 2540 5803 3019
Jacksonville

807 10466 .156 594 1585 - 842
--- 11153 .205 742 2183 2686 1182
-—- 11153 .150 548 1630 1978 894

Kansas City
Kansas City Sub

Los Angeles 1709 12084 .253 1925 5038 6394 2697
Miami 1 2093 8904 .399 1365 3325 4552 1777
Miami Sub 1 -—— 8904 . 450 1169 2963 4182 1464
Milwaukee 945 9765 .144 516 1507 1803 789
New Orleans —-— 8975 .182 1129 3151 4590 1626
New York 2 1313 11188 .097 1417 3565 4433 2317
Phoenix 632 11363 .136 1100 3199 4142 15872
Philadelphia 1 929 8807 .383 1679 4081 5513 2338
Phila. Sub 1 --= 8807 .222 836 1846 2585 1151
Pittsburg 1837 9998 .134 687 1539 2079 1056
Pittsburg Sub -—= 9998 .110 601 1343 1873 881
San Diego 1744 11766 . 153 869 2439 3069 1326
San Francisco 1 1006 13575 .146 1451 4009 4978 2304
San Jose 472 12583 .115 960 2707 3364 1452
Seattle 1011 12919 .089 720 2033 2432 1103
St Louis -— 8799 .197 1027 2887 3704 1705

WOONRPPRPOORPWUWRLROWOOVORPRPROOOWOWNNR

CONPOWNNNNNNNNBENOCOCONP,PONWOHONWWYW

St Louis Sub - 8799 -103 589 1652 2149 899

Notes:

For Pop = population per square mile (thousands) and Income = income per
capita, the suburb variables are set equal to the respective city variables.
Thefts = thefts/100,000 cars and UM/BI = ratio of UM to BI liability claims.
Policy A: married male age 45 drives 1987 Chevrolet Caprice.

Policy B: single male age 19 drives 1987 Chevrolet Caprice.

Policy C: two car family - married male age 50 and single male age 19
drive 1987 Chevrolet Caprice, married female age S0 and single male age
17 drive 1982 Buick LeSabre.

Policy D: married male age 45 drives 1988 BMW .325E 4 Door.

Each policy is for less than 10 miles to work and 8,000 miles annually, a

clean record, and the following limits: BI/PD = 50/100/25; UM = 15/20;
Collision = 250; Comprehensive = 250; MED/PIP = (BASIC)
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TABLE 2: CITY DATA - PENNSYLVANIA

Sample Premiums

City Thefts UM Claims Adult 19 yr old

Philadelphia 929 1200 1688 5060
Pittsburg 1837 60 659 2058
Harrisburg 655 50 492 1575
Reading 411 30 497 1587
Erie 289 - 571 1810
Johnstown - - 500 1588

Notes:

Thefts = thefts/100,000 cars.

Sample premiums are averages over three major state insurers. For

Philadelphia, the rates have also been averaged over city’s three
territories.

Policies are both for males driving a 1987 Chevrolet Caprice less than 10
miles to work with a clean record, with the following limits: BI/PD
50/100/25; UM = (BASIC); Collision = 250; Comprehensive = 250; MED/PIP
(BASIC).

Source: National Association of Independent Insurers, Pennsylvania Fact
Book, 1989.
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TABLE 3: INDEMNITIES (FIVE YEAR LOSS COSTS)

City BI PD PIP COMP UM
Baltimore 221(2.37) 78(1.47) 91(2.52) 32(1.27) 36(3.17)
Chicago 89(1.77) 46(1.11) - 82(2.086) 24(3.55)
Cleveland 70(1.85) 45(1.15) - 87(2.19) 19(3.32)
Columbus 39(1.03) 46(1.16) - 25(0.84) 6(1.10)
Detroit 34(1.42) 169(1.38) 100(1.63) 168(2.48) 12(4.01)
Jacksonville 28(0.63) 45(1.02) 31(0.88) 20(0.73) 7(0.49)
Los Angeles 302(2.31) 94(1.40) o 84(1.96) 60(3.64)
Miami 84(1.89) 54(1.23) 59(1.67) 61(2.24) 46(3.20)
Milwaukee 73(1.71) 43(1.32) - 33(1.10) 13(2.94)
New York 114(2.00) 64(1.20) 76(1.63) 166(3.23) 10(3.56)
Philadelphia 247(4.66) 54(1.26) 276(4.18) 87(2.59) 110(10.6)
San Diego 103(0.78) 46(0.87) —— 37(0.88) 8(0.55)
San Francisco 127(0.95) 66(1.23) —_— 50(1.16) 15(0.98)
San Jose 90(0.68) 57(1.06) - 35(0.83) 8(0.54)
Seattle 65(1.15)_ 53(1.34) 18(0.89) 24(1.02) 8(1.04)
Notes:

The policies are defined as follows: BI = bodily injury liability, PD =
property damage 1liability, PIP = personal injury protection, COMP =
comprehensive, UM = uninsured motorist coverage. We did not have data on
collision coverage.

Numbers in parentheses are loss costs divided by state averages.
Detroit’s PD loss cost is for Michigan’s broadened collision coverage.
Source: Insurance Services Office, Inc., and National Association of

Independent Insurers (ISO-NAII) Factors Affecting Urban Auto Insurance
Costs, 1988.
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Figure 2: Payoff Functions
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Figure 3: Risk-Price Decomposition
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