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This paper considers whether short-period deterministic cycles can exist in a
class of stationary overlapping generations models with long- (but finite-)
lived agents. It shows that if agents discount the future positively, then as
life spans get large, nonmonetary cycles will disappear. Further, neither
constant monetary steady states nor stationary monetary cyeles can exist. It
also shows that if agents discount the future negatively, then there are
robust examples in which constant monetary steady states as well as stationary
monetary cycles (with undiminished amplitude) can occur no matter how long
agents live.
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I. Introduction

This paper investigates the occurrence of periodic deterministic
cycles of short periods in stationary, pure exchange overlapping generations
(OLG) models with long-lived agents. Since Gale's [1973] paper, it has been
known that OLG models can possess cyecliec steady-state equilibria in which
interest rates and consumption allocations oscillate in a periodic fashion.
This can happen even though the characteristics of the economy (people, pre-
ferences, and endowment patterns) are the same in each period. Grandmont's
[1985] paper shows the variety of periodic cycles that can exist and how such
cycles arise when the intertemporal elasticity of substitution is sufficiently
smaller than unity.1 This produces strong income effects (relative to substi-
tution effects) from a change in the interest rate and leads to backward-
bending offer curves in a graph of future versus current consumption.
Grandmont argues that such endogenous cycles can- be consistent with some
observed business cycle relationships and that government policy can eliminate
cycles and lead the economy to a constant (nonfluctuating) steady state.
However, all of Grandmont's discussion is in the context of a two-period-lived
agent OLG model, and hence all of the cycles in his model have periods éreater
than the agents' life spans. This has prompted the comment [Sims, 1986] that
observed business cycles have periods much shorter than agents' life spans and
that short-period cycles would either be unlikely to exist or be quantita-
tively insignificant in amplitude in OLG models with long-lived agents. The
argument for this is presumably based on the incentive (due to concave utility
functions) as well as the opportunity (since agents live many more periods
relative to a cyecle, they will overlap with many other generations) to avoid

fluctuating lifetime consumptions.



The above arghment, however, does not seem entirely convinecing. It
is true that agents who face a constant interest rate and fluctuating incomes
would wish to smooth consumption. But when interest rates themselves are
fluctuating, agents would not choose to smooth consumption, even when incomes
are constant. It is therefore not obvious that such short-period cycles
cannot exist, whatever their magnitude.

This paper considers the issue in a class of stationary, pure ex-
change OLG -economies with long-lived agents. The method used is similar to
that in Aiyagari [1987a]. I construect a sequence of OLG economies with longer
and longer lived agents. Preferences are of the discounted-sum-of-utilities
type with a fixed discount rate, and lifetime endowment patterns are quite
arbitrary. Utility functions with small intertemporal elasticities of substi-
tution which generate strong income effects (relative to substitution effects)
are permitted. I fix attention on cycles of a given period and consider what
happens as life spans become large. For simplicity, discussion is restricted
to cycles of period two, but the method carries over for cycles of any pe-
riod. In addition, and again for simplicity, the utility function is ini-
tially taken to be of the type with constant elasticity of substitution.
This, I believe, brings out most clearly why such equilibria may or may not
exist. It will be seen, however, that we can dispense with this simplifica-
tion, too.

Equilibria in an OLG model can be of two types: (i) monetary, in
which there is a fixed quantity of fiat (outside) money which is positively
valued in terms of goods, and (ii) nonmonetary, in which fiat money is absent
or, equivalently, has gzero value in terms of goods. Therefore, periodic
cycles can also be of either of these two types. With two-period-lived agents

and only one good at each date (essentially Grandmont's [1985] model), the



only nonmonetary equilibrium is autarkic; hence, there can be no nonmonetary
cycles. However, as shown by Gale [1973] and Grandmont [1985], monetary
cycles can exist with the right preferences and endowment patterns. With
many-period-lived agents, there may in general be periodic cycles of both
types. (Some examples are given later, in note 4).

I first consider the case in which agents have a positive utility
discount rate. In an earlier paper [Aiyagari, 1987a], I showed that constant
monetary steady states do not exist for any large length of life (denoted
T). A necessary condition for the existence of a monetary cycle is that there
exist a constant monetary steady-state equilibrium. An immediate implication
is that monetary cycles of any period cannot exist for any T large. There-
fore, for this case, I focus on short-period nonmonetary cycles and show that
these, too, must disappear (i.e., cannot exist) as T becomes sufficiently
large. Note that this is stronger than asserting only that the amplitude of
cycles goes to zero as agents live longer.

Since much of the discussion of cycles has taken place in the con-
text of monetary equilibria, we need fo allow for the existence of (at least)
constant monetary steady states when agents have -long lifetimes. This leads
to a consideration of the case in which agents have a negative discount
rate. In such a case, it is possible to construct robust examples such that
both constant monetary steady states and cyelical monetary equilibria (with
undiminishing amplitude) exist no matter how long agents live. Thus, the
intuition referred to earlier seems valid for the case of a positive discount
rate but does not seem so when the discount rate is negative.

This result may have implications for the existence of stationary
"sunspot" equilibria, in which prices and consumption allocations fluctuate

stochastically even though preferences and éhdowments are nonrandom (see



Azariadis [1981] and Cass and Shell [1983]). Spear [198U4] shows that these
too arise due to strong income effects. Azariadis and Guesnerie [1986] show
that sunspot equilibria following a two-state Markov process arise if and only
if there are two-period deterministic cycles. This connection, however, is
not pursugd here due to the difficulties inherent in analyzing stochastic
steady states in OLG models with more than two-period-lived agents [Aiyagari,
1987a].2 Another implication would be for endogenous fluctuations in asset
prices. The analysis suggests that in positive discount rate OLG economies,
endogenous cyclical fluctuations (of short period) in asset prices unrelated
to dividend fluctuations would not occur.

The differences between my analysis and that of Woodford [1986]
should be noted. Woodford works with an infinitely lived agents model with
borrowing constraints and shows that sunspot equilibria (as well as determin-
istic cycles)3 can arise. However, the assumptions under which a sequence of
generations behaves as a single infinitely lived agent (altruistic prefer-
ences, perfect credit markets, and operative transfers) are ra"cher strin-
gent. Moreover, the same set of assumptions rules out the existence of mone-
tary equilibria so that one needs to resort to ad hoc "frictions" to generate
monetary equilibria. The existence of such frictions may be incompatible with
an infinitely lived agents representation of the underlying sequences of
overlapping generations. I therefore stick to the pure OLG framework of
Grandmont [1985] while letting agents have longer life spans.

The rest of this paper is organized as follows. Section II de-
scribes the model and exhibits the (nonexistence of cycles for all large T)
result for the case of a positive discount rate. Section III contains a
discussion of monetary cycles when the discount rate is negative. And Section

IV concludes. The Appendix shows that constant monetary steady states can



exist for all large T when the discount rate is negative but cannot exist for

any large T when the discount rate is positive.

II. Deterministically Cycling Steady States

The model used is a simplified version of the one in Aiyagari
[1987a] without any intragenerational heterogeneity. Consider a stationary
OLG economy with one representative agent per generation who lives for T
periods. At any given date there are T agents of different generations in-
dexed by their current age s, which runs from 1 (for the newly born) to T (for
the about to die). If we let cés) be the consumption of an agent at age s,
then a newly born agent has preferences given by Z§=1ss'1U(c(s)), where 0 < B8
< 1 and U(e) = (c1'“-1)/(1-a), a > 0. Note that o is the (absolute value of
the) elasticity of marginal utility and a~! is the (intertemporal) elasticity
of substitution. Lifetime endowments are given by {ws,s=1,2,...,T}. These
endowments are viewed as truncations (at T) from a given infinite sequence
{ws}:=1 which is taken to be nonnegative, bounded, and bounded away from
zero. As we increase T, we get a sequence of OLG economies with longer and
longer lived agents.“

The strategy for showing that cycles cannot exist when T is large is
proof by contradiction. We start by assuming that a cyclic steady state
exists and derive its implications for consumption and endowment patterns and
preferences. These implications are shown to be contradictory as soon as T
becomes large. We consider two-period cycles in detail; the method, however,
extends to cycles of any fixed per‘iod.5

Let r. be the interest rate from t to t+ 1 and let
(...,r1,r2,r1,r2,...) be a two-period cycle in interest rates with ry > ro.
Let the discount factors be A (1+r~i)‘1 so that y, < Y5. Due to stationar-

ity and the focus on steady states, we only need to consider two types of



agents. Let Agent 1 be the one who faces the sequence rq, Iy, ... Over his
lifetime and let c1(s), s=1,2, ..., T, be his lifetime consumptions. Agent
2 faces the sequence ry, ry, ... and let 02(3), s=1,2, ..., T, be his life-

time consumptions. Let

(T-2)/2, if T is even

(T-1)/2, if T is odd

and
1, if T is even
K =
0, if T is odd.
The agents solve the following optimization problems.
Agent 1:
§os=1 0 1
(1) max ) 8°"'U(e'(s)), subject to
s=1
1 1 1 2 1 T k1
e (1) +v,e(2) + yv,v,e (3) + Yivge (1) + oo+ (yyv,) yje (T)
- 2 T k
= w1 + Y1W2 + y172w3 + Y1Y2wu + ee. + (7172) Y1wT'
Agent 2:
T os-12
(2) max ) B 'U(e“(s)), subject to

s=1
02(1) + 7202(2) + Y2Y102(3) + Y§Y102(4) Foae. (7271)T7502(T)

_ 2 Tk
=W, o+ YW, + 72y1w3 oYY Wy o+ (Y2Y1) YW -



Market eclearing: Let Wl = 2§_1ws be the aggregate endowment which is con-

stant over time. Due to stationarity it is enough to look at market clearing
at two consecutive dates, when the interest rates are ry and rs.

The market-clearing conditions yield
(3a) (1) +e'3) + e'(5) + ot + (k) + B(2) + ) + 2(6) + ...
+ 2(T-14k) = W
(3b) P(1) + ®(3) + ¢A(5) + ... + A(T-k) + &'(2) + c'(B) + ST(6) 4 ...
+ el (T-14k) = W,
Utility maximization implies that for any agent i,

1/a

x4 (6/71) , if re = r,

1) ci(s+1) -

cies) 1/a

= (B/Yz) 3 if I‘t = r‘2,

N
n

and obviously, X1 > X5,

A. Assuming T Is Qdd-

At this point we assume that T is an odd number. Using (4) in the

market-clearing conditions (3), we can solve for consumptions. Let

- (T+1)/2
8 =1 + KBy + oon + (x1x2)
_ (T-1)/2
B=14+ x1x2 + ... + (X1X2)
A= 8% - x,%B8% = 42 - B(A-1) = A(A-B) + B > O.

172



We then have the following solutions for consumptions:

1 (A-x_B)
wT A
2 (A-x,B)
wT A
1 2 B(x,-X.,)
e () -c (N _ 172
(6a) = - ——250
1 2 x.e (1) - x,¢2(1)  (x,-x,)A
¢ (2) —ec(2) _ ™1 2 I
(6b) T = = 3 > 0
W z W
s
It then follows that
1 2 B(x,-x,)
(7a) c(s) -c(s) 1_2 (x,x )(S-”/2 > 0, s odd
Wt A 172
1 2 A(x,-x,)
(7b) ¢ (s) ; e (s) | 1 2 (x1x2)(s'2)/2 > 0, s even.
W
In general, we conclude that
(8) c1(s) > cz(s), for all s.

That is, Agent 1, who is born when the interest rate is high, must have a
uniformly higher lifetime consumption profile as compared to Agent 2.

When can this happen? I now illustrate the role of a low inter-
temporal elasticity of substitution (high «) in generating large income ef-
fects (relative to substitution effects) and backward-bending offer curves
which can lead to the desired effect on the consumption profiles of the two
agents. For this purpose, it is convenient to rewrite the optimization prob-
lems of the two agents in the following manner, which takes advantage of sepa-

rability.



(9)

(10)

(1)

where

(12a)

(12b)

For Agent 1: Let

T
V1(e1(1)) = max ) Bs'1U(c1(s)), subject to

s odd
3 (s-1)72 1 1
L) ¥ els) = (1)
s odd
1 T osa 4
Vy(e'(2)) =max § 8°7°U(e'(s)), subject to
S even
T-1
I (rrp) 5272 M) - el2)
S even

max V1(e1(1)] + BV2(e1(2)), subject to

1 . .
81(1) + Y1e (2) = w1 + Y1W2,

T

- (s-1)/2
Weo= L (vgv,) W
1 s odd 12 s
T-1
ﬁz = z (Y172)(s-2)/2ws.
s even

For Agent 2: The problem is rewritten in the same way as for Agent

1, except c1(s), e1(1), e1(2) are replaced by c2(s), e2(1), e2(2), and in

equation (11), Y, is replaced by Y- Obviously, we need only consider the two-

period optimization problem

(13)

max V1(e1) + BV2(e2), subject to

+ Ye. = W, + YW
€1 Y& F W Y

1 2

because this yields
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(14a) ('(,e' (@) = (e

1,62) |Y=Y1

() (2(1),e%@)

(e1 ’e2) |Y=Y2o

The requirement on consumption profiles derived earlier in (8) then implies

that we must have
(15) () > (1), e'2) » (2.

This follows from (9) and (10) and the corresponding problems for the second
agent.

Looking at (13) and (14), and keeping in mind that Y1 < vp, We see
that this can only happen if the offer curve (in a graph of e, versus e1) is

positively sloped and e4 is a gross complement for ey; that is, ey falls as vy

rises in the relevant neighborhood. This in turn requires that the excess
demand for good 2 be positive (e2-ﬁ2>0) and that the elasticity of marginal
utility for V2(-) be sufficiently greater than one (in absolute value), so
that the situation is as shown in Figure 1.

Formally, it is easy to verify that

. =
(16) de, V2[1 a2(e2 w2)/e2]
dy ~ Al
- ' W -
(i) ng ) V1[1+a1(w1 e,)/e,]
dy ~ BA
' W -
(18) de, \11[1+<:;1(w1 e )/e,]
de, = _., ~ !
1 BVZ[az(eZ—wz)/e2-1 ]
where
vy S %23
PV — -y = =z -
A = 3 V2, a, Vi > 0, ay Vé > 0.



Figure I

Nonmonetary Cycles (8 < 1) When Endowments Are Larger

in Odd Periods of Life
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The parameters a; and ¢, will be inherited by Vy(+) and Vy(+), re-
spectively, from U(-) via (9) and (10). 1In fact, for the case of constant
elasticity of marginal utility, it is easily seen that @y = ay = a. As is
also obvious from Figure 1, to get e, - ﬁg > 0, we need ﬁ1 to be significantly

larger than W This, together with an a sufficiently larger than one, may

5°
generate cycles.

It is possible to get a rough idea of magnitudes as follows. First,
it is not difficult to show (along the lines of Aiyagari [1987a]) that as T
gets large, both Yy and y, converge to 8.6 Further, the functions V1(-) and
V2(-) are nearly identical for large T. The only reason for any difference
between them is that we took T to be an odd number so that the definition of
V1(-) contains one additional term as compared to V2(-). But this difference

will tend to zero for large 7.7 It then follows from (13) and (14) that as T

gets large,

(19) el(1) = @), &2(1) = (2.

Therefore, we have

(20) e, = (§1 + 8d,)/(1+8).

Plugging (20) into (16), we get the condition
1 - a(ez-w2)/e2 <0,

which requires

(21) ﬁz < [(a-1)/(a+8)]ﬁ1,

where (approximately) we have, using (12),

(22) W, = B W W, = z B W_.
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This requires (in addition to «>1) that the endowment streams be larger in odd
periods of life as compared to even periods in the above (present value)

sense. For example, if a = 2 and 8 = 1, we need W, < 1/3 ﬁ1. Such a re-

2
quirement may not seem odd in the context of a two-period-lived agent OLG
model, but it does seem a little strange in the context of a many-period-lived
agent OLG model. This consideration in itself may be deemed sufficient to
make cycles seem unlikely. We will see, however, that cycles can be ruled out
independently of the pattern of lifetime endowments as well as independently
of the elasticity of substitution parameter.

From (6), and in view of  note 6, we  see that
(01(1)-c2(1))/[01(2)—02(2)) = B/A > 1as T+ It must then follow from (9)
and (10) that (91(1)-e2(1)]/(e1(2)-e2(2)) > 1as T » ». By looking at Figure
1 and noting that Y1s Yo * B, we conclude that the slope of the offer curve at
Yy =8is
;§g|Y=B > 1asT»a,

—_

However, this can be seen to be impossible because at Y = B, Vi = Vé and

e = ey = (§1+B§2)/(1+s). Hence, from (18), we get that

Eigl . 1 + [a8(§1-ﬁ2)/(§1+8§2)] i

1+ 8
=1+ ’
8{[a(ii,-7,)/ (i, +80,) -1} s{{ali,~i,)/ (i +8i,) ]-1}

which is strictly greater than and bounded away from one.

B. Assuming T Is Even

We now briefly look at the case when T is even. Substituting (4) in

the market-clearing conditions (3), we have
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T

1]
=

(01(1) + x202(1))[1 *RE, o+ (x1x2)T/2]

(02(1) + X1c1(1))[1 + X xz)T/Z] T

Ko + ou. + (x1 W,

172

The above two equations imply that c1(1) + x202(1) = c2(1) + x1c1(1) and hence
that c1(1)(1-x1) = 02(1)(1-x2). Therefore, either x;, 2, < 1 or Xy, X5 > 1.
Further, we have

1 1 -x

c (1) - 2
wT 1 - (X1X2)(T/2)+1
02(1) _ 1 - x1
wT 1 - (x1x2)(T/2)+1

Consider what happens if X1, Xy > 1. Then

1 2 X, - X
(23a) c (1) - e (1N - 1 2 <0
T (T/2)+1
W 1 - (x1x2)
1 2 5 X 01(1) - % c2(1) X,= X,
W W 1 - (x1x2) *

and, in general, c1(s) < c2(s) for all s. From (9) and (10) we then see that
this requires e1(1) < e2(1) and e1(2) < e2(2). Moreover, note that Y1 < 1o
<8 and V4(:) = V5(+). In terms of the offer curve, the situation must look
like that depicted in Figure 2 (see the dashed budget lines).

This again requires that the offer curve be positively sloped in a
neighborhood of y = B8, as shown. This will take a high o and a low §1 rela-
tive to ﬁe; that is, endowments should be relatively larger in even periods of
life compared to odd periods. However, the same argument used previously can
be used again to eliminate these cycles for all sufficiently large T. From

(23), [02(1) - c1(1))/(02(2) - c1(2)) = 1. This requires that



€ A

Figure II

Nonmonetary Cycles (8 < 1) When Endowments Are Larger

in Even Periods of Life
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[ez(1)-e1(1)/[e2(2)-e1(2)) + 1 as T » =, which cannot happen since the offer
curve (this time) has a slope that is strictly less than and bounded away from
one as T gets large.

Lastly, consider the case X1, X5 < 1. Then we have c1(1) - 02(1) =
cf(z) - ¢%(2) » 0, and this time c(s) > ¢®(s) for all s. From (9) and (10)
this requires that e1(1) > e2(1) and e1(2) > e2(2). We also have Yo > Y > 8B
and V4(-) = V5(-). The offer curve picture must look as shown in Figure 1
(see the solid budget lines). Again, the same argument used before (namely
the slope of the offer curve at y=8) leads to the elimination of these cycles.

Thus, in all cases, cycles cannot survive large T.

C. Extension to Other Utility Functions

For simplicity we restrict attention to two-period cycles. Follow-
ing Aiyagari [1987a] we assume that the elasticity of substitution is bounded
and bounded away from zer'o.8 We let T be even so that there are an equal
number of odd and even periods in an agent's life. This makes the functions

V1(~) and V2(-) in (9) and (10) identical. Utility maximization now implies

that
U'(c1(s+1)] U'(cz(s+1)) Y4
U'(c1(s)) s odd ) U'(CZ(S)] s even B
ur(e'(s+1)) Ut (c?(s+1)) Y,
U'(°1(s)) S even : U'(c2(s)) s odd ] &

It is easy to show either that Y, and Y5 both exceed 8 or that they are both
less than 8. For suppose to the contrary that Y4 < B < Yoo Then it follows

from above that
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cl(n <el@), ') <y, ..., l(r-1) < ¢l (T)
(1) > ¢2(2), A(3) > BW), ..., c2(T-1) > (T).

These inequalities are inconsistent with the market-clearing conditions (3).
Next, it is easy to show that either c1(s) > cz(s) for all s or

that c1(s) < 02(3) for all s. This follows because

U'(c1(s+2)) U'(cz(s+2)] YqYs

u'(c'(s)) i U’ (c?(s)) g2

for all s.

If c1(1) > 02(1), then c1(3) > c2(3), c1(5) > 02(5), and so on, until c1(T—1)
> cZ(T-1). We cannot have c1(2) < c2(2) because this implies that c1(4) <
02(4), 01(6) < 02(6), and so on, until e'(T) < cZ(T), which is inconsistent
with market clearing. Therefore, we must have c1(s) > 02(5) for all s. Simi-
larly, if c1(1) < 02(1), then cl(s) < cz(s) for all s.

It follows from (9) and (10) and the analogous problems for Agent 2
that we must have either {e1(1)>e2(1) and e1(2)>e2(2)} or {e1(1)<e?(1)" and
e1(2)<e2(2)}. From (13) and (14) this leads to the conclusion that the offer
curve must be positively sloped. There are four possible situations, as shown
in Figures 1 and 2 (and depicted by solid or dashed budget lines).

As in the case of constant elasticity of substitution, here too it
is not difficult to show that YqYy > 62 and hence that Y0 Yo > B. (The
latter follows because either Y, < Y5 < Bor B < Yy < 72.) Therefore, each of
the el(s) » e = (§1+Bﬁ2)/(1+8) where (§1,§2) is given by (22). The offer
curves in the figures are therefore drawn in a small neighborhood of e*. As
before, the important facts about the offer curves are the following: In

Figure 1,
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whereas in Figure 2,

de2
de. < 1.
1{e¥*
" These follow from (18) because at e, V% = Vé and @, = a,.

First, consider the situation in Figure 1. For all T sufficiently
large, el(2) - €2(2) > (1+e)[e1(1)—e2(1)) for some e positive. In view of (9)
and (10) and the analogous problems for Agent 2; we have that ¢1(2) - ¢2(2) >
c'(1) - (1), e(¥) - (W) > ¢'(3) - ¢A(3), and so0 om, until '(T) - ¢(T) >
01(T-1) - 02(T-1). These inequalities are inconsistent with the market-clear-
ing conditions (3). Next, consider the situation in Figure 2, which is ex-
actly the opposite because it implies that for all large T, e2(2) - e1(2)
< (e2(1)-e1(1))/(1+6) for some § positive. This implies that ¢2(2) - e¢1(2) <
c?(1) - e'(1), 24 - e'(¥) < ¢3(3) - ¢'(3), and so on, until ¢(T) - o'(T) <
cZ(T-1) - c1(T-1), which again contradicts market eclearing. Thus, from both
situations, such two-period cycles cannot persist as T gets large; as a re-
sult, such cycles must disappear.

One objection to the specification of preferences considered here
could be that the period utility function U(:) is the same in every period.
Grandmont [1985] discusses the possibility of ecycles in terms of the elas-
ticity of marginal utility being relatively high for old agents compared to
young agents. Quite aside from how to separate the young from the old when
people live many (as opposed to only two) periods, our specification with an
identical U(-) across periods and constant elasticity may not capture this.
Even if the elasticity were nonconstant, it may not be helpful because con-
sumption at every age converges to the same value (permanent income) as T
becomes large (see note 6). Thus, in the limit, the elasticity would be

equalized across any two (fixed) per-iods.g
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One possible way of handling this, while still focusing on two-
period cycles, is to alter preferences as follows. For i = 1, 2, agent 1

. 1-a
maximizes 22_188-1{(01(8)] s-1}/(1-&8), where a_ equals a, if s is odd and

1
equals ay if s is even. Thus, agents have different elasticities of mérginal
utilities in odd, as opposed to even, periods of life. It then follows from
(9) and (10) that
1-a1 1-a2

(24) V1(e) = K1(T)e /(1-a1), V2(e) = K2(T)e /(1-a2).

Equations (13) and (14) now indicate the sense in which this is comparable to
a two-period-lived agent problem with different elasticity coefficients for
the young and the old. The young in one generation face Y1 while those in the
next face Yo, and so on. In fact the analogy can be made a lot closer. We

can solve (9) and (10) and the analogous problems for Agent 2 to obtain

ci(s). Substituting these in the market-clearing conditions (3), we have

1 2 T
(25a) e (1)A1B1 + e (2)A2B2 =W

2 1 T
(25b) e (1)A1B1 + e (2)A282 =W
where

-1
(s-1)/2, 2 (s-1)/2a
a, = (vqv5) (BS/¥,Y) 1

1 {Sgdd12 172 }

-1
(s-2)/72, 2 (5-2)/2
5 ={ Lo Gy (8°/v47,) “2}
S even
By = 1 (82 p s (62/v ) (5272
S odd S even

Now consider the case YqY5 = 32 and w(s) = wq for s odd and w(s) =

Wo for s even. Then the market-clearing conditions (25) reduce to
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(26a) el(1) + 22) = @

n
bR}
+
£

(26b) e2(1) + e'(2)

Together with (13) and (14), this is exactly analogous to a two-period-lived
agent model. However, equations (13), (14), and (26) together imply that
YiYs = 1, which is a contradiction. This can be seen as follows. Using (14)

in the budget constraint for (13), we have

W - e'(1) iy - e
- W B
1571 = Y277 -

e (2) - W, e“(2) - W,

Now use (26a) and (26b) to substitute for the numerator and the denominator,
respectively, in the expression for Y4 to see that Y, = y;. Therefore, such
a two-period cycle cannot exist. |

It may, however, be possible to get nonmonetary cycles with

Y Yy > 82 and a, # ay. In this case, equations (25) reduce to

]
=
+
=

e (1) (1im 2B, /T) + e2(2)(1im 2B,/T) =

=

W, +

1 2°

e2(1)(1im 2B, /T) + el(2)(1im 28,/(T)

However, since @, * ap, it is possible to have lim(2B1/T) # lim(2B2/T), and
hence (e1(2)-e2(2))/(e1(1)-e2(1)) need not converge to one.'’ Thus in this
case, having @, * ay may permit such cycles to persist (but with amplitude

going to zero) even as T tends to infinity.

ITI. Monetary Cycles
Grandmont's [1985] paper is concerned solely with monetary cycles.
Therefore, in this section I indicate under what conditions there can be

equilibria with valued fiat money and discuss if there can be monetary cycles
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under those conditions. As shown in Aiyagari [1987a], the assumption of a
positive discount rate (B8<1) rules out a constant monetary steady state for
all large T (also see the Appendix), which is a prerequisite for obtaining
monetary cycles. Thus, the cycles analyzed in Section II are nonmonetary
cycles. The Appendix shows that constant monetary steady states can exist for
all large T if the discount rate is negative.

If the specification of a negative utility discount rate for agents
seems odd, one alternative would be to adopt the scenario in Aiyagari
[1987b]. There, the discount rate was taken to be positive, but population
was assumed to be growing. It was shown that a constant monetary steady state
exists if and only if the discount rate is less than the growth rate of popu-

lation, provided the elasticity of substitution is sufficiently larger than

ggigz.ll The proviso clearly works against the possibility of getting mone-
tary cycles. Therefore, even though it seems appealing to interpret a nega-
tive discount rate as corresponding to a situation where the discount rate
(while positive) is less than the growth rate, we do not interpret it as such
here. Instead, we exhibit robust examples of periodic monetary cycles when B8
> 1. In a two-period monetary cycle, Yy = 1 because the price level p (the
inverse of the value of money) must be alternating between two values, pq and
Py, at successive dates. The gross rate of return on money must then be
alternating between the values p1/p2(=y;1) and p2/p1(=yg1). Therefore equa-

tions (25) reduce to equations (26) where

Wy= ) w(s)and iy, = ] w(s).
s odd 5 even
This happens because A1B1 = A232 = 1. Note that we do not require w(s) to be
constant over s odd (or s even). If @, = e, =@ and T is even, then the
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funections V1(-) and V2(-) are identical (see note 7) and utility maximization

implies

1/a 1/a 1/a

el@re’ () = ey p'®, @762 = (are % = (ayy)

Substituting the above in (26), we have

' (1 (1-(8rv) %) = (1) 1=y ®).

1

Since 8 > 1 > y,, Wwe must have 8 > y;' > 1 > y, for both e'(1) and e2(1) to be
1 1 1

positive. Further, the budget constraints are

1 - -
61(1) + vq€ (2) = Wy YW,

-1~

2 -12 o~
e~(1) + Yy e (2) = Wy o+ Yy W
Multiplying the second constraint by v, and adding the two, we have
1 2 1 2 _ ~ o~
(e’ (1)+e"(2)) + Y1(e (2)+e“(1)) = (1+y1)(w1+w2).

It follows that one of the equations in (26) is redundant. It is straight-
forward to compute the demand funections for e1(1) and e2(2) and to use (26a)

to obtain

(ﬁ1+yq1§

Wy o+ YW, . (BY1 2) -
1-(1/a) 1+ B1/0&Y1-[1-(1/a)] 1

)1/a

+ W

Positive solutions for §1 and ﬁz Wwill exist, provided

< B1/a[Y11/a_Y 1-(1/a)] ¢ 62/a(1-71).

1= 1

This requires an a of at least 2. In fact, it requires

' < B1/a[Y11/a_Y11—(1/0)]/(1_Y1) < 8Y%[1-(2/0)]
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and therefore g > [1-(2/a)]—a. This implies incredibly large values of either
e or 8, or both. For example, if o = 3, then 8 > 27 or 8 > 7.39 even if a =
=. However, robust examples of two-period cycles (for all large T even) do
exist. For instance, choose a = 10, 8 = 20, v, = 0.99, Y;1 = 1.01, w(s) =
0.097 for s odd, and w(s) = 0.903 for s even. This is a stationary monetary
cycle that persists with constant amplitude for all large T (even). Graphi-
cally, the situation is as shown in Figure 3, with (ﬁ1,ﬁ2) increasing along a
ray through the origin as T increases.

One reason why such large values of a and 8 are required may be that

we imposed @, = a, = a. If we allow ¢, and a, to differ, then there is an

2 1

extra degree of freedom which may expand the set of robust examples.12 It
should be noted that in these monetary cycles with 8 exceeding one, the offer
curve is positively sloped but consumption in even periods (e(2)) is a gross
compiément for consumption in odd periods (e(1)). This requires [from
(16)-(18)]1 a sufficiently small ﬁ1 relative to ﬁz and a sufficiently large

a This‘happens because we took T to be even.

1°

If T is odd, then the functions Vi(-) and V5(-) are not identical
because, as noted earlier, the definition of V1(-) contains an additional term
in the budget constraint compared to that of V2(-). Since YqY¥s = tand 8 > 1,

we see from note 7 that
Vy(e)/V,(e) = k(T) » 1782

As the discussion following equation (15) shows, the offer curve must be
positively sloped and e(1) must be a gross complement for e(2). From

(16)-(18) this requires a large ﬁ1 relative to §2 and a large o From util-

5"

ity maximization we have



Figure III

Monetary Cycles (8 > 1) for T Even
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y;1 for Agent 1

Vi(e,)/8V)(e,) =
L 2 e Yy for Agent 2.

Hence, we have
el@/e(1) = (ax(m)/y,)V®, E2)/63(1) = (sk(mv,) 10

This, together with market clearing, then requires that e2(2) < e2(1) and
e1(2) < e1(1) so that we want gk(T) < Y <1< Y;1. Since k(T) is converging
to 1/82 and 8 > 1, the situation is as graphed in Figure U, which is similar
to the case for a two-period-lived agent model. Robust examples of cycles
corresponding to Figure 4 can easily be constructed, as shown in Grandmont
[1985]. It should be noted. that the offer curve in this case crosses the 45°
line at a gross interest rate equal to B (and not 8-1) because V;(e)/Vé(e) is
converging to 82.

Of interest is that the type of endowment patterns which generate
cycles (of period two) for T even do not generate eyeles for T odd, and vice
versa. When T is even, the total endowment in odd periods of life has to be
much smaller than in even periods; when T is odd, the converse is required.
The most important aspect of the examples is clearly that monetary cycles can
persist with undiminished amplitude. There is no tendency towards damping as

there is in the case of a positive discount rate.

IV. Conclusions

The main results of this study are as follows:

(1) In stationary no-growth OLG models where agents have a positive
discount rate (g<1) and a sufficiently long (but finite) life span T,
periodic cyelical nonmonetary steady states of short period cannot

exist. Constant monetary steady states do not exist for any T suffi-



Figure IV

Monetary Cycles (8 > 1) for T 0Odd
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ciently large and, consequently, monetary cycles of any period cannot
exist. Nonmonetary cycles may exist and persist il agents exhibit
systematically oscillating (over, say, odd and even periods of life)

patterns of elasticities of marginal utilities and endowments.

(ii) If agents exhibit a negative discount rate (8>1), then constant
monetary steady states can exist for all T and cyclical monetary

steady states also can exist and be undamped, given suitable prefer-

ences and lifetime patterns of endowments. An example in which a
two-period cycle can arise would be one in which agents exhibit a
systematically oscillating pattern of endowments (and possibly, but

not necessarily, of preferences) as in result (i) above.

Thus, the comment of Sims [1986], referred to in the Introduction,
seems reasonable when agents have a positive discount rate, but does not seem
so otherwise. I conclude that the case for periodic deterministie cyecles (and
possibly also for stationary "sunspot" equilibria) of periods much shorter
than the life spans of agents is weak in a class of OLG models with suffi-

ciently long-lived agents who“discount the future positively.
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Appendix

Here I show that constant monetary steady states (y1=72=1) ecan occur
for all large T if B > 1, whereas they cannot occur for any lgrge T if
B < 1. With Yy ¥y = 1, the budget constraint and the market-clearing condi-
tion are identieal and give

) e(s) = w(s).

s 5
In the above equation, as well as throughout this appendix, sums over s are
taken from 1 through T. An expression for the per capita desired assets of
the population is given by [Aiyagari, 1987al

1 T

ap = 7 s§1s(c(s)-w(s)).

If an equilibrium with positively valued fiat money exists, then a; must be
positive bec;use in a monetary steady state, the per capita value of real

money balances must equal ap. Suppose that the elasticity of substitution is

constant and equal to a'1. Then

U'(cs)/BU'(cs+1) = 1 implies Ciq = OB
From the budget constraint we have

Ju(s) = § e(s) = o(1) § aS-17e,
Therefore, the expression for ap becomés

Y se(1) 6(8-1)/° - % Y sw(s)

L= TE

(2 38(5-1)/0)2 w(s)
) g(s-1)/a - T

) sw(s).

=



-25 -

Therefore,

z 86(5—1)/0 2 sw(s)
T z 8(3-1)/(1 T 2 W(S)

ag = z w(s)

Now suppose that 8 > 1. Then the above expression for aT will be positive for
all large T, provided that z sw(s)/T z w(s) is bounded away from one (it is
always less than one). This is because the first term in braces is converging
to one. If, for instance, w(s) is constant, then the second term converges to
1/2.  This remains true if w(s) is constant separately over odd and even s.
It follows that a constant monetary steady state will exist for all large T
for a wide pattern of lifetime endowments. This result holds even if the
elasticity of marginal utility fluctuates over odd and even periods of life.
We simply have to separately consider sums over odd and even s.

In contrast, if B < 1, the expression for ap Will be negative for
all large T. This is because the first term in braces is converging to zero,
whereas the second term is bounded away from zero. Therefore, when 8 < 1,

there cannot be positively valued fiat money equilibria for any large T.

Federal Reserve Bank of Minneapolis
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Footnotes

'Grandmont also shows how it is possible to have deterministic
fluctuations which are -aperiodic; i.e., the pattern of fluctuations never
repeats, nor does it converge to a periodic c¢yele. In this paper, 1 only
consider periodic fluctuations.

*These problems are similar to those in Spear [1985].

*See note 6, p. 132 in Woodford [1986].

*That cycles can arise in this framework is easily shown by exam-
ples. A two-period cycle with two-period-lived agents occurs when a = 3,
g < 1/27, Wy = 1, wy = 0. This cycle is characterized by interest rates ry
and ro where (1+r1)'1 = B/x?, (1+t‘2)_1 z B/xg, and Xqy X5 =
{[1-81/3]i[(1-81/3)2-452/3]1/2}/2. Note that this is a monetary cycle; non-
monetary cycles do not exist in this two-period-lived agent setup. However,

if we have four-period-lived agents, then a two-period nonmonetary cycle

occurs when a = 10, 8 = 0.95, wy = 0.041, w, = 0.04, Wy = 0.259, wy = 0.66.

This is characterized by (1+x~1)’1 0.055 and (1+p2)" = 0.059. A two-period
monetary cycle can occur when a = 28.35, 8 = 0.004225, w, = 0.9544, w, = W3
=0, wy = 0.0456. This is characterized by (‘I+r1)'1 = 0.42345 and (1+r2)'1 =
2.3616. Any resemblance of these examples to reality is purely coincidental!
*An important but unanswered question 1is whether a sufficiently
large value % exists such that for all T execeeding f there are no cycles with
periods less than some fraction (possibly unity) of T. Note that this is a

different question than whether, for each cycle of some given fixed period, a

sufficiently large T exists beyond which cycles with that period cannot exist.
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®In Aiyagari [1987a] attention was restricted - to constant steady
states (Y1=72=y), but within-generation heterogeneity was allowed. It was
shown that (a) every sequence of equilibrium y's converges to B8 as T gets
large, (b) consumption at any fixed age s, converges to permanent income
evaluated using B8, and (c) monetary steady states do not exist for any T
sufficiently large. In the present context, suppose that c1(1) and c2(1)
remain bounded and bounded away from zero as T gets large. From (5) this
implies that A/T and B/T are bounded and bounded away from zero. This immedi-
ately implies that X4%5 » 1 and further that (x1x2)T is bounded. Therefore,
A/B converges to 1. It must then follow that X4, % » 1. Otherwise, either
01(1) or 02(1) will become negative for some finite T. Therefore, both Y41 and
Yo converge to B. Note that this argument only shows that the amplitude of
cycles must go to zero as T gets large; it does not bear on whether such
equilibria can exist.

"Direct computation from (9) and (10) shows that Vi(e) =

k1(T)e(1-a)/(1—a) and Vy(e) = k5 (T) e(1'a)/(1—a), where

a

k,(T) ={ y (Y1Y2)(s'1)/2(32/Y1Y2)(S-1)/2a}
- (s-2)/2, 2 (s-2)/2a | ¢
k2(T) = {S éven(Y1Y2) (8 /Y1Y2) } .

Therefore, if YiY > 82 < 1, then k,(T), ko(T) » (1-32)'“.

8Boundedness away from zero is sufficient for interest rates to
converge to (1-8)/8. Boundedness above also guarantees that consumptions
converge to permanent income.

*The convergence of consumptions is not uniform. While it is true
that cT(s) converges to ¥y, say, for each fixed s (as T gets large), it is not

true that cT(T) or cT(T-1) converges to y. See Aiyagari [1987a].
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10 2 ®1%
As an example, suppose that (8 /y1 = (1+a/T) .

Yo)7

'This conclusion is robust to alternative specifications of growth
in the aggregate endowment. One alternative is to assume that the lifetime
endowment vector of each generation is some multiple of the lifetime endowment
vector of the previous generation. This corresponds to assuming that labor
productivity is vintage (i.e., generation) specific. Equivalently, each new
generation is endowed with larger human capital. In order to obtain steady
states, it is also necessary to assume that the period utility function is of
the constant elasticity type. A second alternative is to assume that the
cross-section vector of endowments across ages at each date is some multiple
of the vector at the previous date. This corresponds to labor of all types
becoming uniformly more productive over time due, say, to increasing produc-
tivity of new physical capital. The statement in the text holds true for
either of these alternative specifications of growth.

12This extra degree comes at the expense of a rather strange speci-
fication of preferences alternating over odd and even periods of life, in

addition to similarly alternating endowments.



