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1. Introduction

The fact that the children of rich parents have better economic prospects than the

children of poor parents (“unequal opportunity”) is generally thought to be one of the weak

points of modern capitalist societies. The ability of the descendants of poor families to

eventually become rich and the descendants of rich families to eventually become poor (“social

mobility”) is commonly considered to be one of the strong points of these societies. Here I

argue that both of these characteristics are, in fact, necessary implications of an efficient

societal arrangement when incentives to work hard must be provided.

I argue this point using a generational version of the model of Phelan and Townsend

(1991), an infinitely repeated, general equilibrium economy with incentive constraints. In my

model, each household’s stochastic output is a function of its level of effort. Since effort is

assumed to be costly and privately observed (households can shirk), higher than minimal effort

levels must be induced by making a household’s present or future consumption dependent on

the household’s observed output history.

A large literature considers models similar to this (including Green (1987), Atkeson

and Lucas (1992), Phelan (1994, 1995), Wang (1995), Hopenhayn and Nicolini (1997), and

Khan and Ravikumar (2002)). The main difference between the economies in that literature

and here is that here, instead of a household consisting of a single infinitely lived individual,

a household consists of a sequence of altruistically linked individuals (a familial dynasty),

each of whom lives for one period.

This difference affects the appropriate societal ranking of allocations. When house-

holds consist of a single infinitely lived individual, allocations can be ranked according to their

implied distributions of ex ante lifetime utilities. (If one allocation delivers a distribution of



ex ante utilities dominated by another allocation, then the first allocation is inefficient.)

However, if a household consists of a sequence of altruistically linked individuals, then the

appropriate ranking of allocations is no longer obvious. How those in the first generation

rank allocations will, in general, differ from how their descendants rank allocations.

This study addresses this conflict between generations by ranking allocations according

to a Rawlsian veil-of-ignorance criterion (Rawls (1971)). That is, here, society seeks to

maximize the expected dynastic utility (utility including altruism toward descendants) of

an individual who does not know into which generation he will be born and does not know

the identity or output levels of his ancestors.1 I argue that this implies allocations are

ranked not by their distributions of ex ante utilities, but instead by their implied limiting

distributions of dynastic utilities. This transforms the social planning problem into one

of directly choosing the stationary distribution of dynastic utilities, as well as functions for

determining effort levels, consumption, and a child’s position in this distribution as a function

of his parent’s output. This transformed problem is a static social choice problem and thus

a major simplification.

My first main theorem is that a society using this ranking will always choose the

distribution of dynastic utilities to be nondegenerate; in other words, it will choose unequal

opportunity. Some individuals will be born relatively poor (fated to receive relatively low

consumption for each output realization), and some will be born relatively rich, even though

equal opportunity is feasible. This occurs because it helps with the provision of incentives to

make a child poorer if his parent realizes a low output level and richer if his parent realizes

1Recent work by Freeman and Sadler (2002) uses a similar objective function. They consider whether an
optimal policy can be decentralized through inheritances.
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a high output level.

My second main theorem, subject to a condition which can be proved for specific

functional forms for utility, is that society will choose to have social mobility. It will never

choose to have a caste system with one group of families having relatively high average

consumption and another having relatively low consumption and with no ability for a family

to move between groups. Instead, no matter how poor or rich a parent is, eventually, the

expected consumption of that person’s descendants equals the unconditional expectation.

The basic intuition behind the first result, unequal opportunity, is that there is zero

loss, at the margin, from allowing some dependence of a child’s consumption on his parent’s

output realization. However, a positive marginal benefit results from relaxing the incentive

constraints on parents by making a child’s future consumption depend on his parent’s output

realization. The basic intuition behind the second result, social mobility, is that a society

with multiple castes simply requires more resources to deliver a given mean utility than a

single caste society.

After stating and proving these main theoretical results for a general, additively sep-

arable utility function, I discuss specific functional forms for utility and computation. Next

I show that computation of the optimal stationary distribution of dynastic utilities (along

with the functions determining consumption and mobility) consists of solving a single linear

program. Finally, I present a computed example and compare it to the static optimum and

the optimal allocation when allocations are ranked by ex ante utility, as opposed to limiting,

dynastic utility.

At the end, I discuss the generality of these results. I argue that my results do not

depend on the particular type of incentive problem discussed here, unobserved effort. My
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results can apply to unobserved endowment models such as that of Green (1987), unobserved

preference shock models such as that of Atkeson and Lucas (1992), and unobserved production

models such as that of Khan and Ravikumar (2002).

2. The Basic Model

Consider the following economy. In each time period, t ∈ {0, . . . ,∞}, the economy

is populated by a unit mass continuum of identical, infinitely lived households. There is a

single consumption good. If a household exerts an effort level a ∈ A = {a0, . . . , aN}, then its

output (in terms of the consumption good) q ∈ {q0, . . . , qM} occurs with probability P (q|a).

Assume that P (q|a) > 0 for all (q, a) ∈ Q × A and that there exists (q, q) ∈ Q2 such that if

ai < aj, then p(q|ai) < p(q|aj) and p(q|ai) > p(q|aj). That is, the probability of one outcome

(say, the highest) is increasing in a, and the probability of another outcome (say, the lowest)

is decreasing in a. Households are assumed to be able to privately exert effort less than that

specified by the allocation. That is, they can shirk.

Household utility in period t is determined by the function U(ct, at) = u(ct) − v(at),

where ct is the household’s period t consumption. The function u is assumed to be twice

differentiable with u′ > 0 and u′′ < 0. For ai < aj, v(ai) is assumed to be strictly less

than v(aj). Over time and uncertainty, a household cares about the expected value of (1 −

β)
∑∞

t=0 βtU(ct, at), where β ∈ (0, 1). Let V denote the set of feasible lifetime utilities.

Define the efficient symmetric static allocation (a∗, c∗(q)) as the solution to

max
a,c(q)

∑
q

P (q|a)u(c(q))− v(a)
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subject to a static resource constraint

∑
q

P (q|a)(c(q)− q) ≤ 0

and the static incentive constraint (for â < a)

∑
q

P (q|a)u(c(q))− v(a) ≥
∑

q

P (q|â)u(c(q))− v(â).

Assume that a∗ > a0.

A. Feasible Allocations

Let a dynamic allocation (or simply an allocation) (Ψ0, {at(wt), ct(wt, qt),

wt+1(wt, qt)}∞t=0) be defined recursively as a measure of initial lifetime utilities, Ψ0, and a

sequence of functions at(wt), ct(wt, qt), and wt+1(wt, qt). The function at(wt) specifies the

recommended effort level for a household which starts period t with a continuation expected

utility of wt. The function ct(wt, qt) specifies the nonnegative consumption of a household

which starts period t with a continuation expected utility of wt and realizes output qt. The

function wt+1(wt, qt) specifies the continuation expected discounted utility at the beginning

of period t + 1 of a household which starts period t with a continuation expected utility of

wt and realizes output qt.

Note that through the initial distribution of forward-looking utilities Ψ0, and the func-

tions at(wt) and wt+1(wt, qt), an allocation determines, for all t ≥ 1, the period t distribution

of forward-looking utilities Ψt.

5



An allocation is said to satisfy promise-keeping if, for all t and wt,

(1) wt =
∑
qt

P(qt|at(wt))
(
(1− β)[u(ct(wt, qt))− v(at(wt))] + βwt+1(wt, qt)

)
.

In words, promise-keeping requires that expected dynastic utility of an allocation conditional

on wt is actually wt. Next, an allocation is said to be incentive-compatible if, for all t, wt,

and â < at(wt),

(2) wt ≥
∑
qt

P (qt|â)
(
(1− β)[u(ct(wt, qt))− v(at(wt))] + βwt+1(wt, qt)

)
.

Here, the left side is the dynastic utility associated with taking action at(wt) and the right

side is the dynastic utility associated with taking an alternative action â < at(wt). Finally,

an allocation is said to be resource-feasible if, for all t,

(3) 0 ≥
∫

V

∑
q

P(q|at(wt))[c(wt, q)− q] dΨt(wt).

Condition (3) requires that aggregate production be weakly greater than aggregate consump-

tion. An allocation is considered feasible if it satisfies all three of these conditions (1)–(3).

B. Ranking Feasible Allocations

In most dynamic contracting work, a household consists of a single infinitely lived

individual who discounts the future by β.2 Given this, an allocation is considered efficient if

it is feasible (satisfies promise-keeping, incentive-compatibility, and resource-feasibility) and

2See Green (1987), Phelan and Townsend (1991), and Atkeson and Lucas (1992) among many others. An
exception is Freeman and Sadler (2002).
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if no other feasible allocation delivers a distribution of initial utilities which dominates Ψ0.

In models similar to this one, Atkeson and Lucas (1992) and Phelan (1994) derive

several implications of this type of efficiency. First, these studies show that an efficient

allocation must, household by household, minimize the discounted resource cost of delivering

a given ex ante utility w0 and that this resource cost is a convex function of w0. Thus,

a society maximizing mean ex ante utility would choose a degenerate measure of initial

utilities Ψ0 with all mass on the same point.3 Second, these studies show that efficiency,

by this definition, implies extreme results regarding the limiting distribution of consumption

and utility. In the model of Atkeson and Lucas (1992), almost all consumption paths go to

zero, and mean utility goes to the lower bound of the set of possible utilities (either zero or

negative infinity, depending on the level of risk aversion). In the model of Phelan (1994),

the variance of consumption grows without bound, and thus mean utility becomes infinitely

negative.

Here I consider a different ranking of allocations, supported by the following assump-

tion. Instead of a household consisting of a single infinitely lived individual, suppose that a

household consists of a sequence of altruistically linked individuals, each of whom lives for

one period. Specifically, assume that the dynastic utility of an individual born in period t

consists of weight 1−β on his own direct utility U(ct, at) and weight β on the dynastic utility

of his single child. Thus, his dynastic utility is

wt =
∑
qt

P(qt|at(wt))[(1− β)U(ct(wt, qt), at(wt)) + βwt+1(wt, qt)].

3Ranking allocations by mean ex ante utility is equivalent to maximizing the utility of a household which
does not know where in distribution Ψ0 it will be, but instead sees itself as having the same probability as
all other households of being in any subset of the support of Ψ0.
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(This is equivalent to the individual putting weight 1 − β on his own direct utility, weight

β(1 − β) on his child’s direct utility, β2(1 − β) on his grandchild’s, and so on.) With this

composition of households, the set of feasible allocations is identical to that which holds if

households consist of a single infinitely lived individual. However, the appropriate ranking of

allocations is no longer obvious. Maximizing ex ante dynastic utility puts no direct weight

on the utility of generations born later than period t = 0. These later generations enter the

social calculus only indirectly, through the altruism of those born in period t = 0.

Maximizing ex ante dynastic utility is equivalent to maximizing the expected utility

of individuals who know they will be born in period t = 0. Alternatively, the expected

dynastic utility of individuals who do not know into which generation they will be born can

be maximized. Formally, let vt =
∫

V
wt dΨt(wt) and v = limT→∞

1
T+1

∑T
t=0 vt. In words,

vt is the expected dynastic utility, including altruism toward children, of individuals who

know only that they will be born in period t, and v is the limit of the means of these

period t dynastic utilities. Instead of ranking allocations by v0 (which puts only indirect

weight on later generations) allocations can be ranked by v. Since the number of periods is

infinite, such a weighting scheme puts zero weight on the first T periods (regardless of T ).

Further, for allocations with defined limiting distributions of dynastic utility, this weighting

scheme effectively ranks the allocations according to the mean of this limiting distribution.

To this end, attention is from here on restricted to allocations where a limiting distribution

of dynastic utility exists. Thus, simply choosing this limiting distribution directly results in

a much simpler, static planner’s problem.
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C. Limiting Allocations

Rather than the limiting distribution Ψ being an implication of a dynamic allocation

(Ψ0, {at(wt), ct(wt, qt), wt+1(wt, qt)}∞t=0), one can transform society’s problem to one where Ψ

is instead a choice variable.

Let a limiting allocation be defined as a collection ξ = (Ψ, a(w), c(w, q), w′(w, q)) such

that

• Ψ is the distribution of dynastic utilities, a probability measure mapping subsets of

V → [0, 1];

• a(w) is the recommended action as a function of w, or a(w) : V → A;

• c(w, q) determines the household’s consumption as a function of w and q, or c(w, q) :

V ×Q → +; and

• w′(w, q) is the transition function for dynastic utilities as a function of w and q, or

w′(w, q) : V ×Q → V .

Let B(V ) denote the Borel subsets of the real line. A limiting allocation is considered

stationary if for all subsets W ∈ B(V ),

(4) Ψ(W ) =

∫
V

∑
q

P(q|a(w)) I(w′(w, q) ∈ W) dΨ(w),

where I(·) is the indicator function. Here, the left side is the mass of households on set W

today, and the right side is the mass of households on set W tomorrow.
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A limiting allocation satisfies promise-keeping if for almost all w relative to Ψ,

(5) w =
∑

q

P (q|a(w))
(
(1− β)[u(c(w, q))− v(a(w))] + βw′(w, q)

)
.

In words, condition (5) requires that the functions a(w), c(w, q), and w′(w, q) actually deliver

dynastic utility w.

A limiting allocation is considered incentive-compatible if for almost all w relative to

Ψ and all â < a(w),

(6) w ≥
∑

q

P (q|â)
(
(1− β)[u(c(w, q))− v(â)] + βw′(w, q)

)
.

As before, the left side is the dynastic utility of taking action a(w), and the right side is the

dynastic utility of taking alternative action â.

Finally, a limiting allocation satisfies resource-feasibility if

(7) 0 ≥
∫

V

∑
q

P(q|a(w))[c(w, q)− q] dΨ(w).

Recall that attention is restricted to limiting allocations precisely because society ranks

allocations by the mean dynastic utility of the limiting allocation. Given this, a limiting

allocation is considered optimal if it solves

(8) max
Ψ,c(w,q),w′(w,q)

∫
V

w dΨ(w)

subject to (4)–(7). This constrained maximization problem will be referred to as the primal
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problem.

3. Characterizing Optimal Limiting Allocations

This section presents my main result: unequal opportunity and social mobility are

necessarily characteristics of any optimal limiting allocation. Showing this requires two sup-

porting lemmas. One is that resource feasibility holds with equality in any optimal limiting

allocation:

Lemma 1. If a limiting allocation ξ∗ =(Ψ∗, a∗(w), c∗(w, q), w′∗(w, q)) is optimal, then∫
V

∑
q P(q|a(w))[c(w, q)− q] dΨ(w) = 0.

Proof. Consider an optimal limiting allocation ξ∗ such that

∫
V

∑
q

P
(
q|a∗(w)

)[
c∗(w, q)− q

]
dΨ∗(w) < 0.

For a given ε > 0, construct an alternative allocation ξ as follows. First, for all intervals

(−∞, w], let Ψ
(
(−∞, w + ε]

)
= Ψ∗((−∞, w]

)
. This ensures that the objective function

increases by ε. Next, let a(w + ε) = a∗(w). This ensures that aggregate production is

unchanged. Finally, let w′(w + ε, q) = w′∗(w, q) + ε, c(w + ε, q) = c∗(w, q) if q 6= q, and

c(w + ε, q) be such that

u
(
c(w + ε, q)

)
= u

(
c∗(w, q)

)
+

ε

P
(
q|a∗(w)

) .
In words, a household promised w utils under allocation ξ∗ is delivered w + ε utils under

allocation ξ by increasing all continuation utility promises by ε and increasing the utility
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payment if output q occurs by ε/P
(
q|a∗(w)

)
. This construction ensures that stationarity (4)

and promise-keeping (5) are maintained.

This leaves the incentive-compatibility constraints (6) and the resource-feasibility con-

dition (7) to be met. For a given utility point w + ε and â < a, the incentive constraint for

allocation ξ is that

w + ε ≥
∑

q

P (q|â)
(
(1− β)

[
u
(
c(w + ε, q)

)
− v(â)

]
+ βw′(w + ε, q)

)
.(9)

From the fact that ξ∗ is incentive-compatible, we know that

w =
∑

q

P (q|â)
(
(1− β)

[
u
(
c∗(w, q)

)
− v(â)

]
+ βw′∗(w, q)

)
+ ∆,(10)

where ∆ ≥ 0 is the amount by which the incentive constraint is slack. Subtracting, side by

side, expression (10) from expression (9) and using the definition of ξ delivers that

(11) ε ≥ (1− β)
P (q|â)

P
(
q|a∗(w)

)ε + βε−∆.

This holds because P (q|â)/P
(
q|a∗(w)

)
< 1 and ∆ ≥ 0. Thus, ξ is incentive-compatible.

Finally, the fact that
∫

V

∑
q P
(
q|a∗(w)

)
[c∗(w, q) − q]dΨ∗(w) < 0 implies that there

exists an ε > 0 for which equation (7) is satisfied, contradicting the optimality of ξ∗.

Given that the resource constraint (7) binds, it is straightforward to show that a plan

which maximizes mean utility minimizes the cost of providing any given mean utility. Thus,

the second supporting lemma is the following.

Lemma 2. Suppose a limiting allocation ξ∗ is optimal, and let v =
∫

V
w dΨ∗(w). Then ξ∗
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solves the dual problem

(12) C(v) = min
Ψ,a(w),c(w,q),w′(w,q)

∫
V

∑
q

P(q|a(w))[c(w, q)− q] dΨ(w)

subject to (4)–(6), and

(13) v ≤
∫

V

w dΨ(w).

Proof. The stationary allocation ξ∗ satisfies (4)–(6) immediately since it is optimal and

thus in the constraint set of the primal problem. It satisfies (13) by the definition of v.

Suppose another stationary allocation ξ satisfying (4)–(6) and (13) has a lower value of the

dual objective function (12). Such a plan is in the constraint set of the primal problem since

it satisfies (4)–(6) immediately and satisfies (7) with slack from the fact that the dual has a

lower objective function value than ξ∗. Stationary allocation ξ has a weakly higher primal

objective function value (since it satisfies (13)) and the resource constraint (7) does not bind,

contradicting Lemma 1.

A. Opportunity

Lemma 2 allows for the first main result, that an optimal plan will always exhibit

unequal opportunity. (Some individuals are born with lower expected dynastic utility than

others.) The general strategy of the proof is to assume that all incentives are static—that

all individuals are born with a blank slate—and show that the cost of introducing a small

amount of dependency of children’s consumption on parents’ outcomes is second-order, while
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the benefit, or gain, from this dependency (which allows for the better provision of incentives

to parents) is first-order.

Theorem 1. Let a limiting allocation ξ∗ = (Ψ∗, a∗(w), c∗(w, q), w′∗(w, q)) be optimal. Then

Ψ∗ is nondegenerate.

Proof. The strategy of this proof is similar to that in Rogerson (1985): Suppose no

links across periods and show there exists an improving perturbation. (The model of this

paper is sufficiently different from the model in Rogerson (1985) that this proof needs

a different perturbation than that in Rogerson (1985).) To this end, suppose Ψ∗ is de-

generate with all mass on point w∗. Let a∗ = a∗(w∗). Define an alternative allocation

ξ =
(
Ψ, a(w), c(w, q), w′(w, q)

)
. First, let Ψ put mass 1 − P (q|a∗) − P (q|a∗) on point w∗,

mass P (q|a∗) on point w = w∗ − ε/P (q|a∗), and mass P (q|a∗) on point w = w∗ + ε/P (q|a∗).

By construction, then
∫

V
w dΨ(w) =

∫
V

w dΨ∗(w) = w∗; thus, ξ satisfies condition (13) for

v = w∗. Next, assume for w ∈ {w, w∗, w} that a(w) = a∗. This ensures that aggregate

production is unchanged.

Next, let w′(w, q) = w, w′(w, q) = w, and for q /∈ {q, q}, w′(w, q) = w∗. This

ensures (for all ε) that stationarity (4) is satisfied. Lastly, define the functions c(w, q) for

(w, q) ∈ {w, w∗, w} × Q. To do this, for all q, let c(w∗, q) be such that u
(
c(w∗, q)

)
=

u
(
c∗(w∗, q)

)
+ ∆(w∗, q). Next, let c(w, q) be such that u

(
c(w, q)

)
= u

(
c∗(w∗, q)

)
− ε/[(1 −

β)P (q|a∗)] + ∆(w, q). Finally, let c(w, q) be such that u
(
c(w, q)

)
= u

(
c∗(w∗, q)

)
+ ε/[(1 −

β)P (q|a∗)] + ∆(w, q). Since the original limiting allocation ξ∗ is optimal, choosing ε = 0

and ∆(w, q) = 0 for all (w, q) ∈ {w, w∗, w} ×Q must minimize equation (12) subject to the

promise-keeping constraint (5) and the incentive-compatibility constraint (6).
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Note that the incentive constraint associated with w = w∗ in this restricted optimiza-

tion problem binds; thus, the marginal value of loosening it is strictly positive. To see this,

consider choosing ε and ∆(w, q) to minimize (12) subject to the promise-keeping constraint

(5) but not the incentive constraint (6). Here, I can strictly improve on ξ∗ by setting ε = 0

and setting ∆(w∗, q) such that c(w∗, q) =
∑

q P (q|a∗)c∗(w∗, q) (full consumption insurance)

less a constant to compensate for the utility gain associated with full insurance. (Recall the

assumption that a∗ > a0. Thus, full consumption insurance is not attained by ξ∗.)

Now set ∆(w, q) = 0 for all (w, q). This ensures that the promise-keeping constraint

(5) holds for all ε. Thus, a choice of ε 6= 0 affects only the incentive constraint (6) and the

dual objective function (12).

For w ∈ {w, w∗, w}, the derivative, with respect to ε, of the left side of the incentive

constraint minus the derivative of the right side equals β[P (q|â)/P (q|a∗)− P (q|â)/P (q|a∗)].

This derivative is a strictly negative constant (not a function of ε) for all â < a∗, and thus,

the incentive constraint for each w is loosened as ε increases.

Finally, let u−1(u) denote the consumption payment necessary to deliver utility u(c).

The dual objective function with the definition of ξ and ∆(w, q) = 0 substituted in is then

P (q|a∗)
∑

q

P (q|a∗)
[
u−1
(
u(c∗(w∗, q))− ε

P (q|a∗)
)
− q
]

+P (q|a∗)
∑

q

P (q|a∗)
[
u−1
(
u(c∗(w∗, q)) +

ε

P (q|a∗)
)
− q
]

+[1− P (q|a∗)− P (q|a∗)]
∑

q

P (q|a∗)
[
u−1
(
u(c∗(w∗, q))

)
− q
]
.
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The derivative of this expression with respect to ε is

−
∑

q

P (q|a∗)u−1′(
u(c∗(w∗, q))− ε

P (q|a∗)
)

+
∑

q

P (q|a∗)u−1′(
u(c∗(w∗, q)) +

ε

P (q|a∗)
)
.

This derivative equals zero for ε = 0. Thus, the marginal value of increasing ε when ε = 0 and

∆(w, q) = 0 is strictly positive since it loosens a binding constraint (a first-order benefit) with

zero first-order effect on the objective function, contradicting the optimality of the original

allocation.

B. Social Mobility

Note that an allocation ξ =(Ψ, a(w), c(w, q), w′(w, q)) defines not only the distribution

of dynastic utilities, Ψ, but also the rules under which households move up or down this

distribution. Thus, the answers to questions regarding social mobility are embedded in ξ.

(Can the descendents of poor, or low w, households eventually become rich?) Now I consider

to what extent the efficiency of ξ implies social mobility. In particular, I argue that social

mobility is a direct implication of strict convexity of the cost function C(v).

To allow a strict definition of social mobility, let a set W ∈ B(V ) be called a caste

under limiting allocation ξ if Ψ(W ) > 0, and

(14) Ψ(W ) =

∫
W

∑
q

P(q|a(w))I(w′(w, q) ∈ W) dΨ(w),

which implies a zero exit and entry probability from W . A caste W is called trivial (relative

to ξ) if Ψ(W ) = 1, or if
∫

W
w dΨ(w) =

∫
W c w dΨ(w), where W c denotes the complement of
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W . Thus, for a caste system to be nontrivial, its complement must have positive mass and

the mean utility of those in the caste must differ from the mean utility of those outside the

caste.

My main theorem here is that if C(v) is strictly convex (a condition shown in the

next section for particular functional forms), then any caste system must be trivial. That is,

having a permanently richer group and a permanently poorer group is never optimal.

Theorem 2. Suppose C(v) is strictly convex and a limiting allocation ξ =(Ψ, a(w), c(w, q),

w′(w, q)) minimizes (12) subject to (4)–(6), and (13) for v =
∫

w Ψw(w). Then any caste

W relative to ξ is trivial.

Proof. Let W1 be a caste relative to ξ. If Ψ(W1) = 1, then the result is proved; thus, assume

that Ψ(W1) < 1. Let W2 = W c
1 . Like W1, the set W2 is also a caste. Define two separate

allocations ξi, i ∈ {1, 2}, by choosing Ψi such that for all W ⊂ Wi, Ψi(W ) = Ψ(W )/Ψ(Wi)

and leaving the functions a(w), c(w, q), and w′(w, q) unaltered. (That is, proportionally

put all mass on one set or the other, but otherwise change nothing). These allocations

each satisfy promise-keeping and incentive-compatibility since the original allocation satisfies

these conditions, and each satisfies stationarity since W1 and W2 do not communicate and

the original allocation satisfied stationarity. Put less formally, the fact that the sets W1

and W2 don’t communicate implies that how those in each set are treated defines a feasible

allocation for treating all of society. Thus, each allocation must minimize (12) subject to

(4)–(6), and (13) for v = wi, where wi = [1/Ψ(Wi)]
∫

V
wdΨi(w), i ∈ {1, 2}. If another

allocation satisfies (4)–(6) and (13) at a lower cost, then the original allocation ξ could not

have been optimal, since this lower cost allocation could have been incorporated into the
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original allocation, lowering its cost. Finally, if w1 6= w2, then the strict convexity of C

implies that C
(
Ψ(W1)w1 + Ψ(W2)w2

)
< Ψ(W1)C(w1) + Ψ(W2)C(w2). Since the right side of

this inequality is the resource cost of the original plan, w1 = w2.

4. Functional Forms

Here I introduce two explicit functional forms for U(c, a). These functional forms allow

me to solve for C(v) (up to a constant) and thus prove the strict convexity assumed by Theo-

rem 2. Further, they allow for a relatively complete characterization of the optimal allocation

when allocations are ranked by ex ante utility, as opposed to limiting, mean utility; they thus

help highlight the effect of ranking allocations by the mean of the limiting distribution of

dynastic utilities. While these examples are not additively separable (as the earlier sections

assumed), Lemmas 1 and 2 and Theorem 1 can be proved using arguments similar to those

used earlier.

The simplest example has U(c, a) = − exp(−γ[c−v(a)]) with consumption unbounded

(or c ∈ R) and γ > 0—the constant absolute risk aversion (CARA) utility specification

in Phelan (1994). Given this utility function and consumption set, Phelan (1994) shows

that if allocations are ranked by mean ex ante utility, optimality implies that at is constant

across households and time (thus, so is aggregate production), and household consumption

is the sum of an independent and identically distributed random variable and a term which

follows a driftless random walk. Since effort is constant and utility is a concave function

of consumption, as the cross-sectional variance of consumption increases due to the random

walk term, mean dynastic utility decreases over time without bound. In essence, the optimal

allocation from an ex ante perspective implies a limiting distribution of dynastic utilities
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which has all mass on negative infinity. However, that’s the worst possible allocation when

allocations are ranked, as they are here, by the mean of the limiting distribution of dynastic

utilities. (Theorem 1 shows that a finite mean limiting utility can, in fact, be achieved, since

one can do better than repeating the static optimum, which itself has a finite mean utility.)

Assuming this specific functional form also allows me to show that C(v) is strictly

convex, as assumed by Theorem 2. This is shown in the following lemma:

Lemma 3. If U(c, a) = − exp(−γ[c− v(a)]) with c ∈ R and γ > 0, then for v < 0,

(15) C(v) = min
Ψ,a(w),c(w,q),w′(w,q)

∫
V

∑
q

P(q|a(w))[c(w, q)− q] dΨ(w)

subject to (4)–(6), and (13) satisfies C(v) = − log(−v)/γ+C(−1) and is thus strictly convex.

Proof. See the Appendix.

With some extension of the model, I can construct tractable example economies which

do not depend on CARA utility. In particular, following Atkeson and Lucas (1992), Khan

and Ravikumar (2002), and Phelan (2002), let household output equal kq, where k is the

quantity of land allocated to the household for use in production that period. Let v(a)

denote the per-acre utility loss to effort, and thus, let kv(a) denote the total utility loss

to effort a. Finally, let utility be the constant relative risk aversion (CRRA) specification

U(c, a, k) = [c − kv(a)]γ/γ, where γ = 0 implies that U(c, a, k) = log[c − kv(a)]. With this

specification, if allocations are ranked by ex ante utility, almost all household consumption

paths converge to zero, the result of Atkeson and Lucas (1992) for a preference shock model.

This implies that the limiting distribution of dynastic utilities has either all mass on zero (for

19



the case of γ > 0) or all mass on negative infinity (for the case of γ ≤ 0). Here, as in the

previous example, if allocations are ranked by the mean of the limiting distribution, analogs

of Lemmas 1 and 2 and Theorem 1 can be proved.

Introducing land to the model introduces an additional resource constraint into the

primal problem. Not only must society not allocate more of the consumption good than is

available from production, it must also not allocate more land to households than is exoge-

nously given. However, if society is assumed to be able to trade land for the consumption

good at a linear price p (which can be set equal to the ratio of the Lagrange multipliers as-

sociated with the separate resource constraints), then I can prove that C(v) is convex. This

is shown in the following lemma.

Lemma 4. If U(c, a, k) = [c− kv(a)]γ/γ with c ≥ kv(a), then

(16) C(v) = min
Ψ,k(w),a(w),c(w,q),w′(w,q)

∫
V

(
pk(w) +

∑
q

P(q|a(w))[c(w, q)− q]

)
dΨ(w)

subject to (4)–(6), and (13) satisfies C(v) = v1/γC(1) if γ > 0 (and thus v > 0), C(v) =

exp(v)C(0) if γ = 0, and C(v) = (−v)1/γC(−1) if γ < 0 (and, thus, v < 0). In each case,

C(v) is strictly convex.

Proof. See the Appendix.

5. Computation

My approach of directly choosing the limiting allocation simplifies computation as

well. In particular, if Ψ is restricted to a finite support, then an optimal limiting allocation

can be computed as a single linear program along the lines of Prescott and Townsend (1984).
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While the incentive constraints capture the dynamic decision of households, the choice of

how to organize society given those constraints is static; thus, dynamic programming along

the lines of Phelan and Townsend (1991) or Atkeson and Lucas (1992) is not needed.

The linear program is set up as follows. Let V̂ ⊂ V be a finite grid of points in V

restricting the support of Ψ. Next, let Ĉ be a finite grid of points restricting the range of

c(w, q). (The function a(w) has already been assumed to have a finite range.) The key to

transforming the choice of the limiting allocation into a linear program is to combine the

measure Ψ (now restricted to a finite support) with the rules a(w), c(w, q), and w′(w, q).

That is, let µ(w, a, q, c, w′) be the fraction of households who start at point w ∈ V̂ , receive

action recommendation a ∈ A, experience output realization q ∈ Q, get consumption level

c ∈ Ĉ, and transit to point w′ ⊂ V̂ .

Choosing µ(w, a, q, c, w′) for all (w, a, q, c, w′) ∈ V̂ × A × Q × Ĉ × V̂ pins down

(Ψ, a(w), c(w, q), w′(w, q)) if µ(w, a, q, c, w′) satisfies several linear conditions. First, the frac-

tions µ(w, a, q, c, w′) must add to one, or

(17)
∑

w,a,q,c,w

µ(w, a, q, c, w′) = 1.

Next, the fraction of households which realize output q must coincide with the fraction

determined by the technology P (q|a). This can be enforced by requiring that Bayes’ rule

holds for all (w̄, ā, q̄) ∈ V̂ × A×Q:

(18)
∑
c,w′

µ(w̄, ā, q̄, c, w′) = π(q̄|ā)
∑
q,c,w′

µ(w̄, ā, q, c, w′).
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The objective function, stationarity, the promise-keeping, incentive-compatibility, and

resource-feasibility constraints are, like the previous conditions, linear in the choice variables.

The objective function becomes

(19)
∑

w,a,q,c,w′

µ(w, a, q, c, w′)w.

A collection µ(w, a, q, c, w′) is stationary if for all w ∈ V̂ , the fraction of households at w is

the same today and tomorrow, or if for all w̄ ∈ V̂ ,

(20)
∑

a,q,c,w′

µ(w̄, a, q, c, w′) =
∑

w,a,q,c

µ(w, a, q, c, w̄).

Promise-keeping requires that, for all w ∈ V̂ ,

(21)
∑

a,q,c,w′

µ(w, a, q, c, w′)[(1− β)u(c, a) + βw′ − w] = 0.

Incentive-compatibility requires that, for all (w, a, â < a),

∑
q,c,w′

µ(w, a, q, c, w′)[(1− β)u(c, a) + βw′] ≥(22)

∑
q,c,w′

µ(w, a, q, c, w′)[(1− β)u(c, â) + βw′]
P (q|â)

P (q|a)
.

Finally, the resource-feasibility constraint is satisfied if and only if

(23)
∑

w,a,q,c,w′

µ(w, a, q, c, w′)(c− q) ≤ 0.
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6. An Example

Now I present an example economy computed using the methods just outlined. For

this example economy, I also compute the solutions to the static optimum and the optimum

when allocations are ranked by ex ante dynastic utility and compare those solutions to that

when allocations are ranked by the mean of Ψ, the limiting distribution of dynastic utilities.

In the example, these are the parameter values used: a ∈ {0, 1}, q ∈ {0, 1}, β = 2/3,

and U(c, a) = − exp(−(c − 0.3a)). The high output (q = 1) occurs with probability 3/4 if

a = 1 and probability 1/4 if a = 0.4

Figure 1 displays Ψ, as well as the utility levels associated with the static optimum,

the mean of Ψ, and the optimum when allocations are ranked by ex ante dynastic utility.
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Figure 1: The Distribution of Dynastic Utilities, Ψ.

Since the static optimum is a feasible but suboptimal limiting allocation, its value is

strictly lower than the mean of Ψ. Since the optimal limiting allocation is a feasible allocation

4The parameters specific to the computation method are as follows: V̂ = {−0.90,−0.88, . . . , −0.52,−0.50}
and Ĉ = {−0.20,−0.18, . . . , 1.02, 1.04}. The program was written in C using the gnu compiler and the gnu
linear programming package. While the resulting linear program has 111,132 variables and 106 constraints,
it solves on an Apple 867MHz PowerBook G4 in under four minutes.
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when stationarity is not imposed, the mean of Ψ is strictly lower than the utility associated

with the optimal ex ante allocation.

For all w in the support of Ψ, a(w) = 1. (Thus, this function is not graphed.) Fig-

ure 2 presents the function c(w, q). Not surprisingly, c(w, q) is increasing in both arguments.

Further, for a household receiving the dynastic utility associated with the static optimum,

c(w, q) provides less dependence of consumption on current output q than does the static

plan. For a household receiving the dynastic utility associated with the ex ante optimum,

c(w, q) provides more dependence of consumption on current output than does the ex ante

optimum.
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Figure 2: The Consumption Function, c(w, q).

Neither of these characteristics is surprising. That the optimal limiting allocation has

less dependence of current consumption on current output comes entirely from the fact that

in the static optimum, all incentives must be provided through such dependence, while the

optimal limiting allocation allows for incentives to be provided through the function w′(w, q)

as well. That the optimal limiting allocation has more dependence of current consumption on
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current output than does the ex ante optimal plan comes from the fact that future generations

matter more to society when ranking allocations by mean limiting utility than by ex ante

utility. Having a household’s consumption depend on its ancestors’ output costs society

because utility is a convex function of consumption. However, such a dependence helps relax

the incentive constraints on parents (Theorem 1). The more future generations enter the

objective function of society, however, the costlier such intergenerational dependence, and,

thus, the less this manner of providing incentives is used.
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Figure 3: The Utility Transition Function, w′(w, q).

Figure 3 presents the transition function w′(w, q). Like the function c(w, q), the func-

tion w′(w, q) is increasing in both arguments. The transition function w′(w, q) provides more

dependence of future dynastic utility on current output q than does the static optimum, since,
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by definition, the static optimum allows for no such dependence. For a household receiving

the dynastic utility associated with the ex ante optimum, w′(w, q) provides less dependence

of future dynastic utility on current output than does the ex ante optimum, precisely because

c(w, q) is more sensitive to current output than is the ex ante optimum.

7. Concluding Remarks

The results here should generalize to environments other than unobserved effort. The

idea that at perfect equality the marginal cost of unequal opportunity is second-order but

the benefits are first-order appears quite general. The result on social mobility should hold

for any incentive model in which the resource cost of providing a mean dynastic utility is

strictly convex. For instance, an earlier version of this work proves Theorems 1 and 2 for

the taste shock model of Atkeson and Lucas (1992). While the need to provide incentives is

fundamental here, the particular source of the incentive problem is not. Technically, all that

is needed is a binding incentive constraint. With this, both unequal opportunity and social

mobility are necessary implications of an efficient, or optimal, societal arrangement.
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8. Appendix: Proofs of Lemmas 3 and 4

Here I provide proofs for Lemmas 3 and 4, asserted and used above. Both assert that

under certain conditions, the cost function C(v) is convex.

Lemma 3 Proof.

Proof. (Lemma 3). To begin the proof of Lemma 3, note V = (−∞, 0). Next, let

ξ−1 =
(
Ψ−1, a−1(w), c−1(w, q), w′

−1(w, q)
)

solve (15) subject to (4)–(6) and (13) for v = −1.

Next, fix ∆ > 0, and define ξ∆ by scaling ξ−1 as follows: First, for all {w, w} ∈ R2
−, let

Ψ∆([w, w]) = Ψ−1([w/∆, w/∆]). Next, let a∆(w) = a−1(w/∆), c∆(w, q) = c−1(w/∆, q) −

log(∆)/γ, and w′
∆(w, q) = w′

−1(w/∆, q)∆. By construction, ξ∆ satisfies (4). Next, consider

the incentive constraint for a given w < 0 and â < a∆(w), that

∑
q

P
(
q|a∆(w)

)
{(1− β)

[
− exp(−γ[c∆(w, q)− v(a∆(w)]

)]
+ βw′

∆(w, q)}

≥
∑

q

P (q|â){(1− β)
[
− exp

(
− γ[c∆(w, q)− v(â)]

)]
+ βw′

∆(w, q)}.

With the definition of ξ∆ substituting into this, it simplifies to

∑
q

P
(
q|a−1(w)

)
{(1− β)

[
− exp

(
− γ
[
c−1(w/∆, q)− v

(
a−1(w/∆)

)])]
+ βw′

−1(w/∆, q)}

≥
∑

q

P (q|â)(1− β)
[
− exp

(
− γ[c−1(w/∆, q)− v(â)])

)]
+ βw′

−1(w/∆, q),

which holds since ξ−1 is incentive-compatible, or satisfies (6). Next, confirm the promise-
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keeping constraint (5) by noting that

∑
q

P
(
q|a∆(w)

)
{(1− β)

[
− exp

(
− γ[c∆(w, q)− v

(
a∆(w)

)])]
+ βw′

∆(w, q)}

= ∆
∑

q

P
(
q|a−1(w)

)
{(1− β)

[
− exp(−γ

[
c−1(w/∆, q)− v

(
a−1(w)

)])]
+ βw′

−1(w/∆, q)}

= ∆w/∆ = w.

Further, ξ∆ satisfies (13) for v = −∆ since

∫
V

w dΨ∆(w) =

∫
V

w ∆ dΨ−1(w) = ∆

∫
V

w dΨ−1(w) = −∆.

Thus, ξ∆ is in the constraint set of the dual problem for v = −∆. The resources consumed

by ξ∆ can be expressed as

∫
V

∑
q

P
(
q|a∆(w)

)
[c∆(w, q)− q]dΨ∆(w)

=

∫
V

∑
q

P
(
q|a∆(w∆)

)
[c∆(w∆, q)− q]dΨ−1(w)

=

∫
V

∑
q

P
(
q|a−1(w)

)
[c−1(w, q)− log(∆)/γ − q]dΨ−1(w)

= − log(−v)/γ +

∫
V

∑
q

P
(
q|a−1(w)

)
[c−1(w, q)− q]dΨ−1(w)

= − log(−v)/γ + C(1).

Next, suppose that there exists a plan ξ∗ satisfying (4)–(6) and (13) for v = −∆,

which has resource cost C∗ < − log(−v)/γ + C(−1). Here, let δ = −1/∆, and define ξδ by

scaling ξ∗ by δ as above. The same arguments as above establish that ξδ satisfies stationarity,
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incentive-compatibility (6), and promise-keeping (5). Further,

∫
V

w dΨδ(w) =

∫
V

w/δ dΨ∗(w) = (1/δ)

∫
V

w dΨ∗(w) = −1,

and thus ξδ satisfies (13) for v = −1. The resource cost of ξδ is, then,

∫
V

∑
q

P
(
q|aδ(w)

)
[cδ(w, q)− q]dΨδ(w)

=

∫
V

∑
q

P
(
q|aδ(wδ)

)
[cδ(wδ, q)− q]dΨ∗(w)

=

∫
V

∑
q

P
(
q|a∗(w)

)
[c∗(w, q)− log(δ)/γ − q]dΨ∗(w)

= − log(−1/v)/γ +

∫
V

∑
q

P
(
q|a∗(w)

)
[c∗(w, q)− q]dΨ∗(w)

= log(−v)/γ + C∗ < log(−v)/γ − log(−v)/γ + C(−1) = C(−1),

which contradicts optimality of ξ−1.

Lemma 4 Proof.

Proof. (Lemma 4). The proof of Lemma 4 proceeds in the same way as that of Lemma

3. For γ > 0, ξ1 = {Ψ1, k1(w), a1(w), c1(w, q), w′
1(w, q)} is defined as the optimal allocation

delivering v = 1. Then, for ∆ > 0, a new allocation ξ∆ is defined such that for all [w, w] ∈ R2
+,

Ψ∆([w, w]) = Ψ1([w/∆, w/∆]), k∆(w) = k1(w/∆)∆1/γ, a∆(w) = a1(w/∆), c∆(w, q) =

c1(w/∆, q)∆1/γ, and w′
∆(w, q) = w′

1(w/∆, q)∆. I can show that ξ∆ is satisfied for (4)– (6)

and (13) for v = ∆. Further, if any other plan had a lower value for the dual objective

function (16), it could be used to generate a lower cost plan for delivering v = 1. Then

c∆(w, q) = c1(w/∆, q)∆1/γ, and v = ∆ delivers C(v) = v1/γC(1).

For γ < 0, ξ−1 = {Ψ−1, k−1(w), a−1(w), c−1(w, q), w′
−1(w, q)} is defined as the optimal
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allocation delivering v = −1. Then, for ∆ > 0, a new allocation ξ∆ is defined such that for all

[w, w] ∈ R2
−, Ψ∆([w, w]) = Ψ−1([w/∆, w/∆]), k∆(w) = k−1(w/∆)∆1/γ, a∆(w) = a−1(w/∆),

c∆(w, q) = c−1(w/∆, q)∆1/γ, and w′
∆(w, q) = w′

−1(w/∆, q)∆, and the argument proceeds

unaltered. Then c∆(w, q) = c−1(w/∆, q)∆1/γ, and v = −∆ delivers C(v) = (−v)1/γC(−1).

Finally, for γ = 0, or U(c, a, k) = log
(
c − kv(a)

)
, the reference allocation ξ0 =

{Ψ0, k0(w), a0(w), c0(w, q), w′
0(w, q)} is defined as the optimal allocation delivering v = 0.

Then, for ∆ ∈ R, a new allocation ξ∆ is defined such that for all [w, w] ∈ R2, Ψ∆([w, w]) =

Ψ0([w + ∆, w + ∆]), k∆(w) = k0(w − ∆) exp(∆), a∆(w) = a0(w − ∆), c∆(w, q) = c0(w −

∆, q) exp(∆), and w′
∆(w, q) = w′

0(w−∆, q)+∆, and the argument proceeds unaltered. Then

c∆(w, q) = c0(w −∆, q) exp(∆), and v = ∆ delivers C(v) = exp(v)C(0).
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