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1.  Introduction

In this paper we propose a new equilibrium concept for stationary OLG environments,

organizational equilibrium. The equilibrium allocation exists and is essentially unique, as it is

the solution to a well-behaved maximization problem. The equilibrium allocation is much better

than autarky but is not Pareto optimal, and it is very different from that implied by the standard

equilibrium concepts.

A necessary feature of an equilibrium concept is that beliefs about the behavior of other

agents are rational. In stationary OLG environments agents of any future generation have the op-

tion of restarting, perhaps by moving along with the seeds of future generations to another island.

These two features imply that any future generation must do as well as the initial generation did.

Existing equilibrium concepts in the literature do not satisfy this condition.

The organizational equilibrium concept is applicable to other environments where there is

a role for contractual arrangements that outlive their founders, which from now on we refer to as

organizations. Examples of organizations are firms, criminal gangs, economics departments,

guilds and governments, to cite only a familiar few. The key elements of organizations are that in

the future new members join and, when old, run the organization and that the initial generation of

old agents cannot dictate the behavior of future generations. With finite horizon problems, the

planning problem can be solved by backward induction. With infinite horizon problems, for the

reasons pointed out by Shell (1971) and for other reasons, the analysis becomes much more in-

teresting.

In section 2 we discuss the environment: preferences and endowment. We place special

emphasis on the fact that agents of all generations have the same opportunities. Even though we

proceed with the analysis in the context of a stationary example, we later present our definition
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of equilibrium under certain forms of non-stationarity. Section 3 formally describes the partici-

pation, or no restarting, constraints that rationality imposes and that we think equilibrium should

satisfy. In section 4 we review the standard notions of equilibrium—core, market and game theo-

retical—that apply to the overlapping generations environment and show how they either fail to

exist, violate rationality, or yield multiplicity of equilibria to the point that just about any alloca-

tion is an equilibrium outcome. In section 5 we describe our favorite allocation and some of its

properties. Section 6 formally defines our equilibrium concept that generates our allocation and

that we propose as the appropriate equilibrium concept for this class of environments. Section 7

discusses how to incorporate assets into our equilibrium concept and shows how the implied

equilibrium relates to the competitive one. In Section 8 we discuss the extension of our equilib-

rium concept to non-stationary environments, and we provide an example for a growing econ-

omy. Further, we discuss the extension of this concept to other types of environments. Section 9

concludes.

2.  The Environment

The environment is an old favorite in economics: the stationary, two period-lived, one

good per period, no production, overlapping generations economy. We will deal with a precise

example of this economy in the first few sections because the arguments are easier to follow.

Later we will use a more general specification.

In each period t = {0,1,2,…}, a new agent is born1 who goes on to live two consecutive

periods. The endowment of the agents is stationary and equal to {3,1}. Generation t agents’ pref-

erences are represented by the utility function ut = u(yt, zt+1) = log(yt)+ log(zt+1). Note that we use

the letter y to refer to young and the letter z to refer to old and the subscript to refer to the period;

utilities are indexed by the date of birth. A very important feature of this environment is that at
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any point in time the young agents can leave the economy and start another one. If they do so,

the next generation will be born in the new location. We say that they move to another island,

although literally, all that this means is that they ostracize the old and become, de facto, the first

old themselves.

Denote with at ∈  A = [0,3] the possible transfers that agent t > 0 can give to his elders.

For compactness of notation we sometimes write ut = Ut(a) = U(at, at+1) = log(3−at)+log(1+at+1).

In this environment note that any constant transfer in the interval [0,1] improves the welfare of

everybody. Moreover, this improvement is monotonic in the transfer within this interval. Of

course, many other transfer schemes that are non-stationary are also possible. The allocation at =

1 for all t is particularly interesting, and we call it the optimal stationary allocation. It is both

stationary and Pareto optimal. It implies the maximum sustainable utility for all agents. This al-

location is depicted as point A in Figure 1, while point B is the endowment, or autarky.

We turn next to discuss the implications of agents having the restarting option.

3.  Implications of the Possibility of Agents Leaving

In this environment any agent can choose to move to another island and hence become

the first old. Rationality of individual behavior requires that the utility obtained by the first old

cannot be higher than that of any agent who comes later: if this were the case, the latter would

move to another island and achieve as the first old the utility of the former.2 This introduces cer-

tain participation constraints that we call the “no restarting condition.” Formally, let ∞
=1}{ tta  be a

set of transfers. Then we have

Definition 1  A set of transfers ∞
=1}{ tta  satisfies the no restarting condition if

(1) ),0(),( 01 aUaaU tt ≥+ .
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Or alternatively, Ut(a) ≥ U0(a), or ∞
=0},{ ttt zy  satisfies ),3(),( 01 zuzyu tt ≥+ .

In particular, the optimal stationary allocation cannot be implemented through an equilib-

rium concept that satisfies this Condition. The reason is clear: the first old manages to achieve a

utility level that is much higher (as he consumes {3,2}) than younger generations who only get

the utility of {2,2}. If such an allocation were achievable, younger generations would be better

off by moving to another island and restarting the economy. This fact will be a recurrent theme

of this paper.

4.  How do Equilibrium Concepts Fare?

We now review a number of equilibrium concepts that can be applied to this class of

economies in order to pick an allocation. We show how they predict allocations that do not sat-

isfy the no restarting condition. As we will see below this is not exactly true: non-cooperative

game theoretical notions have a large set of equilibria, some of which are rational in the sense

described and some not. Also, the core is empty. We classify these concepts into core, market

and game theoretical equilibrium concepts.

4.1  The Core

Esteban (1986) and Hendricks, Judd, and Kovenock (1980) show that economies of the

type that we are considering have an empty core because coalitions of later agents can always do

better by themselves than by giving anything to the previous agents. Engineer, Esteban, and

Sakovics (1997) propose a notion of institutions that are needed to implement a transfer and are

expensive to change and find that under certain conditions it is in the interest of the first old to

build them. Unfortunately, institutions are not modeled explicitly, and we found this to be a

shortcoming of their analysis.
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We see the standard definition of the core as being too restrictive: blocking coalitions can

always be constructed under the traditional definition of the core. This requisite prevents any

transfer. As we will see later, our concept of organizational equilibrium requires an organization

that cannot be blocked by another organization by means of a certain restrictive type of alloca-

tions or consumption plans. In this sense, our equilibrium concept can be thought of as a form of

recursive core.3

4.2  Market Notions of Equilibrium

Even though this is a model designed to study monetary economics,4 non-monetary com-

petitive equilibria can also be readily defined. We review the concepts of equilibrium with and

without money.

4.2.1  Non-Monetary Equilibria

In this environment, a Debreu (1954) valuation equilibrium can be readily defined. Let

the commodity space be

(2) }|4|sup|{ ∞<ℜ∈= ∞
t

t ssS

with norm |4|sup|||| t
t

ts ss = . Note that this commodity space is essentially an l∞ space with the

individual components rescaled by the factor t4 . Note that individual endowments belong to the

space, while the aggregate endowment does not. A consequence of this latter fact is that the First

Welfare Theorem fails. Also note that any individual allocation also belongs to the space.

A valuation equilibrium for this environment consists of the price ∞
=

∞
= == 00

* }3{}{* t
t

ttpp

and the autarkic allocation.5 First note that p* is a bona fide price in the sense that it defines a

continuous linear functional on the commodity space.6 Second note the price is chosen so that
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relative prices equate the marginal rate of substitution at autarky. Finally, feasibility is immedi-

ate.

As we noted above, this equilibrium is not optimal. Far from it, there are a large number

of transfer schemes from the young to the old, all of which are Pareto improving.7

The equilibrium is unique up to the numeraire. One way to prove this result is as follows.

A difference equation specifying (yt+1,pt+1) as a function of (yt,pt) is obtained by solving the

budget constraint and first order condition of generation t along with the date t + 1 market clear-

ing condition. The initial value is (y0 = ξ, p0 = 1).

The same conclusions follow for “sequence-of-market” equilibria. In such a setup, only

trades within generations are feasible, and given common convex preferences there are no mutu-

ally beneficial trades, rendering autarky as the only equilibrium allocation. The relative prices of

the date t and date t + 1 goods are the same as for the valuation equilibrium.

To summarize, a non-monetary equilibrium exists both as a valuation equilibrium and as

a sequence of market equilibrium. It is unique, and it yields abysmal utilities to all agents since

the equilibrium is autarky.

4.2.2  Monetary Equilibria

This is the basic model where monetary equilibria has been studied. Its main properties

are superbly described in Wallace (1980). In a monetary equilibrium, the problem faced by agent

t can be written as

(3) }log{logmax 1
,, 1

++
+

tt
zmy

zy
ttt

       subject to

(4)                                    3=+ ttt qmy

(5)                                    11 1 ++ += ttt qmz ,
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where tm  is the nominal holdings of money chosen by the agent and qt is the date t price of

money (the inverse of the price level). In equilibrium, total money acquired has to equal total

money in the economy that we normalize, so mt = 1 for all t. Substituting the equilibrium quan-

tity of money in the first order condition of the households yields

(6) )23(1 ttt qqq −=+ .

This condition has to be satisfied by the equilibrium prices. Note that if q0 > 1, successive appli-

cation of (6) shows that eventually the price will be negative, which is inconsistent with equilib-

rium. Note also that if 10 <q  then 0lim =∞→ tt q , and the allocation converges to autarky. If q0 =

1 then the allocation is the stationary optimal one. This reasoning shows that for any q0 ∈  (0,1],

there is a monetary equilibrium indexed by q0.

In words, there is a continuum of equilibria. One yields the optimal stationary allocation

that, as stated above, does not satisfy the no restarting condition. The other equilibria give utility

lower than that to the first agent, but sufficiently far into the future there are agents with utility

arbitrarily close to that in autarky, which again violates the no restarting condition.

The no restarting condition can be more graphically described in the context of monetary

equilibria. Suppose some old agent tries to sell his money to the young. Suppose also that the old

agent’s allocation in the monetary equilibria yields higher utility than that of the young agent.

Then, the no restarting condition states that the young agent should say,

“Thanks for the idea. I think I might as well implement money myself and be the

first old.”

Note that this is feasible given that money is some intrinsically useless and costless commodity.

To summarize, monetary equilibria can yield the optimal allocation and some other allocations
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that Pareto dominate autarky. However, none of these allocations satisfy the no restarting condi-

tions, which violates rationality.

Another conceptual problem with non-monetary competitive equilibria for this environ-

ment is the lack of equivalence between the core and the set of competitive equilibria in large

economies. Autarky is a non-monetary competitive equilibrium while the core is empty.

4.3  Game Theoretical Notions of Equilibria

To use game theoretical notions of equilibria we need a concept of a game. Unfortunately

the environment that we are interested in, unlike many others, does not define by itself a par-

ticular game to be played. Hammond (1975) defined a simple transfer game that may represent

some of the key properties of the OLG environment, and that is the one typically associated with

the environment. In this game, the set of actions for each agent t, tA , consists of the transfers he

can give to his elder. The elder in turn does nothing. He accepts the transfer and dies.

Define a period-t history as },,,,0{ 121 −= tt aaah �  and the set of all possible period-t

histories as 121 −×××= tt AAAH � . A strategy for agent t is a mapping ttt AHs →: . A strategy

profile for the game is ∞
== 0}{ ttss . Define tS  as the set of all possible strategies for agent t and

�××= 21 SSS .

Note that in this game the option of moving to another island is not clearly defined. We

could perhaps think of a zero transfer as moving to another island, but such an action could be

also thought of differently.

We now review the main equilibrium concepts for dynamic games. We consider subgame

perfection a requirement for rationality in complete information games and therefore a require-

ment for equilibrium.
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4.3.1  Subgame Perfection

Definition 2  A subgame perfect equilibrium is a strategy profile ŝ  such that

(7) )),(ˆ,(maxargˆ 1 ahsaUs ttt
Aa

t +∈
∈ for all t, for all th .

Hammond (1975) already noted that the set of all subgame perfect equilibrium includes

strategy profiles supporting an autarkic outcome. An example is

(8) 0)(ˆ =tt hs for all t, for all th .

He also noted the set of subgame perfect equilibria includes as well strategy profiles that support

the stationary Pareto optimal outcome. An example is

(9) 1)(ˆ =tt hs if }1,,1,1{ �=th , and 0)(ˆ =tt hs  otherwise.

Moreover, the allocation at = 2 for all t can also be implemented as a subgame perfect equilib-

rium with the strategy,

(10) 2)(ˆ =tt hs  if }2,,2,2{ �=th , and 0)(ˆ =tt hs  otherwise

This allocation is interesting. It makes all but the first generation indifferent with autarky, but it

makes the first generation extremely happy, as its consumption allocation is the point {3,3}. It is

in fact a Pareto optimal allocation.

Needless to say this allocation does not satisfy the no restarting condition, as any agent

who restarts the system would obtain U(0,2), rather than U(2,2).

Equilibria preferred by the old

What if the first old chose strategies subject to those strategies being subgame perfect as

used, for example, in Boldrin and Rustichini (2000)? However, as we have seen, the solutions to

this problem, strategies that yield a0 = 2, do not satisfy the no restarting condition.
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4.3.2  Asheim’s Revision Proofness

Asheim (1997) proposes a refinement of subgame perfection that imposes some sensible

restrictions in the possible outcomes. However, Silverman (1999) has shown that the set of allo-

cations that are implementable through revision proof strategies is still quite large, and, in par-

ticular, it contains the stationary Pareto optimal allocation associated to a constant transfer of 1.

We have already seen that this allocation does not satisfy the no restarting condition.

Equilibrium preferred by the old

Equilibria preferred by the old among those that are revision proof yield a0 ≥ 1, which

does not satisfy the no restarting condition.

4.3.3  Kocherlakota’s Reconsideration Proofness

Kocherlakota (1996) considers the problem facing an infinitely lived decision-maker with

time inconsistent preferences. The environments that he considers are stationary. He represents

the problem as a dynamic game played by the agent’s different selves. He introduces an equilib-

rium refinement for infinite horizon, complete information, stationary games with a single deci-

sion-maker in each period. Here stationary means that all subgames are the same. A subgame

perfect equilibrium is symmetric if after every history, the continuation path has the same value.

A symmetric subgame perfect equilibrium is reconsideration proof if it yields the highest value

in the symmetric set of equilibria.

The obvious extension of his refinement concept to the Hammond (1975) transfer game

yields our preferred allocation. We do not know what would happen for all possible games that

we could associate to this environment. Neither do we know how to extend this concept to the

environments with assets or with growing endowments that are addressed in this paper.
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5.  The Proposed Allocation

So far we have shown that none of the standard equilibrium concepts leads us to an allo-

cation that satisfies our no restarting condition and improves upon autarky. We now turn to the

question of whether agents can improve upon autarky while not violating the no restarting con-

dition.

There are many allocations that improve upon autarky. We think the following allocation

should be the outcome for any suitable equilibrium concept for our class of environments.

The allocation gives all generations utility level 2 log 2, which is the maximal sustainable

utility.  The transfers by generation 1 solve

(11) 3/1ˆ2log2)ˆ1log(3log 11 =⇒=++ aa .

For our proposed allocation to be individually rational, an allocation must yield at least 2 log 2 to

those born in 1. This means that 2â  has to solve

(12) 2/1ˆ2log2)ˆ1log()ˆ3log( 221 =⇒=++− aaa .

In general tâ  solves

(13) 2log2)ˆ1log()ˆ3log( 1 =++− − tt aa

yielding )2/(ˆ += ttat . Note that

(14) 1ˆlim =
∞→ t

t
a .

A few things to note about this allocation are depicted in Figure 2.

1. It is resource feasible.

2. No generation has the incentive to restart the system if this is the equilibrium alloca-

tion.
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3. It is not a market equilibrium, either monetary or non-monetary (recall that the former

is either the stationary Pareto optimal allocation or an allocation that converges to

autarky, while only autarky is a non-monetary equilibrium).

4. Even though this allocation can be implemented through a subgame perfect Nash

equilibrium, or even a revision proof equilibrium, it is one of many that has this prop-

erty. Moreover, it would not be singled out by the first old if he were to choose

among those equilibria in either game theoretical class.

So far this seems like a nice insight; we want more. We want a procedure to find alloca-

tions like this one. We turn to this issue next.

6.  Organizational Equilibrium

To define the equilibrium concept, we look at a general class of stationary economies

with generic young and old endowments },{ zy ee  and a generic concave, increasing, continuous

utility function. Again let the utility be denoted by u. Let the set of feasible allocations be de-

noted by

(15) }and0,0,|),{( 0
yzy

tttt eyteezyzyzyF =>∀+=+≥= .

Before explicitly providing our definition of equilibrium, let’s look at a program that the

first old would solve in order to achieve the maximum possible utility, provided later generations

do as well as they do. It is

(16) ),(max 10
,,

zyu
zyv

subject to the feasibility constraints

(17) ,zy
tt eezy +=+  t ≥ 1 and yey =0

and to the no restarting condition
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(18) .),( and 1,),( 101 vzyutvzyu tt ≤≥≥+

Proposition 1  A solution to the program is the set of transfers with the properties that all gen-

erations realize the maximal sustainable utility, which is the maximum of u(y,z) subject to y + z ≤

e y + ez.

Proof.  The proof is immediate, as the allocation is feasible and no plan exists that yields higher

utility to all generations by definition of sustainable. 

A strengthening of the no restarting condition yields uniqueness.  The strengthening re-

quires that any generation not only can restart the system of transfers, but also can move it back-

wards. This means that generation t > s can achieve not only the transfer that generation 0

achieves, but also the transfer achieved by generation s. A sufficient condition for this stronger

version is that agents can only observe the transfer made by the previous generation.

Proposition 2  The solution specified in Proposition 1 satisfies the stronger no restarting condi-

tion and is the only solution that satisfies the strong no restarting condition.

Proof.  First, the solution does indeed satisfy the stronger version of the no restarting condition,

as no generation benefits by moving the system backwards. To establish that it is the only solu-

tion, suppose there were another set of transfers that solve program (17)–(18) and that satisfy the

strong no restarting condition. The utility of generation zero is determined by the value of the

program and therefore the transfer by generation one for all solutions to the program. The strong

no restarting condition implies that the utility level of generation t + 1 weakly exceeds that of

generation t. If any generation gets higher utility than the initial, then all generations subsequent

to that generation must get higher utility than the initial generation. This is impossible, as the

initial generation gets the maximum sustainable utility. This establishes the proposition. 
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Now we can think of an organization of agents as composed of agents who propose a

plan that satisfies the participation and feasibility constraints. Formally,

Definition 3  An organization equilibrium for this environment is a plan }ˆ,ˆ{ zy , and associated

utilities )ˆ,ˆ(ˆ 1+= ttt zyuu , proposed by the original founders such that:

1. The allocation is resource feasible: .}ˆ,ˆ{ Fzy ∈

2. The allocation satisfies the no restarting condition: 0ˆˆ uut ≥  for all t.

3. There is no other plan that is both resource feasible and satisfies the no restarting

condition for all generations and that yields higher utility for the organization found-

ers.

It is immediate to see that the solution to program (16) satisfies all the conditions of the

organizational equilibrium. Moreover, any organizational equilibrium solves that program. The

fact that a solution to the program always exists and is unique yields existence and uniqueness of

the organizational equilibrium. Before we explore a variation of the economy when there are

certain types of assets we note the following.

For this environment, recursive methods do not yield the organizational equilibrium. To

see this, consider the following functional equation T:

(19) ),(max)( 10
},{

1 zyuvTv
Fzy

mm
∈

+ ==      subject to

(20) .1,),( 1 ≥≥+ tvzyu mtt

If operator T had a maximal fixed point, it would be the organizational equilibrium.8 However, T

does not have a fixed point. For all 2log2≤v , 2log2)( >vT . For 2log2>v , the constraint set

is empty and T(v) is not defined.
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7.  Physical Assets

We now apply our equilibrium concept to an economy where there are assets that yield a

dividend each period and members of the initial generation each own an asset, for example, a

tree. Otherwise the economy is identical to the one considered previously. The endowments are

3=ye  and 1=ze , and

(21) 11 loglog),( ++ += tttt zxzxu .

The tree bears δ > 0 units of goods every period unless it has been destroyed by a previous or the

current owner. As we will see later this last assumption of whether the tree can be destroyed by a

previous or current owner turns out to be crucially important.

We start analyzing this economy by looking at its competitive equilibrium that turns out

to exist and to be unique. Moreover, good prices go to zero exponentially fast. Consequently, all

feasible aggregate consumptions have finite values and the First Welfare Theorem applies.

We can write the problem of the agent in the following fashion:

(22) 1
,,

loglogmax
1

++
+

tt
zmy

zy
ttt

          subject to

(23) 3=+ ttt qmy

(24) )(1 11 δ++= ++ ttt qmz ,

where tq  is the tree price in t and tm  is the number of shares of the tree that the agent purchases.

A competitive equilibrium price system, }{ tq , has the property that when agents face it, they

choose to hold exactly one tree per period, 1=tm . The first-order conditions for maximization

along with market clearing can be used to find the unique competitive equilibrium prices and al-

location:



16

(25)
2

6)1(1 2 δ+δ−+δ−
=tq

(26)
2

6)1(5 2 δδδ +−−+
=ty

(27)
2

6)1(3 2 δ+δ−+δ−
=tz

for all 1≥t  and δ+= 30y .

Before checking whether the competitive equilibrium satisfies the no restarting condition,

let’s calculate what the organizational equilibrium predicts:

(28) ),(max 10
},{

zyu
Fzy ∈

subject to the no restarting condition, which in this case amounts to

(29) 1,2log2),( 1 ≥≥+ tzyu tt

(30) .1zzt ≥

The reason for (29) is that the young can at any time go off to another island on their own, which

will yield them utility 2 log 2. The reason for (30) is that future old people are in the same situa-

tion as first old people. Therefore, they must receive as much for the tree as the first old. The

solution to the programming problem is then

(31)
2

16)4(4 2 −+++
=

δδ
tz .

A few comments are in order.

Comment 1  The competitive equilibrium satisfies the no restarting condition for all values of δ,

including δ = 0. This last case is of particular interest because it coincides with the monetary

equilibrium allocation of the treeless economy, which as we saw did not satisfy the no restarting
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condition. The reason for this apparent contradiction lies in the role of a dividendless tree that

only the old have. This is effectively the same as assuming that the first old can issue money and

the later generations cannot. It is a very different environment from the treeless economy that we

looked at first.

Comment 2  Both the competitive equilibrium and the organizational equilibrium allocations are

Pareto optimal.

Comment 3  The organizational equilibrium yields much higher utility for the first generation

than the competitive equilibrium, and the opposite holds true for the later generations. The dif-

ference between the two equilibrium concepts is that under our implementation of organizational

equilibrium, there is no competition among the first old. Therefore, they capture all the gains

from trade from later generations. The explicit introduction of competition among the first old in

our environment would prompt the organizational equilibrium allocation to coincide with the

competitive equilibrium. This point is closely related to the equilibrium concept used in Chari

and Hopenhayn (1991).

8.  Non-Stationary Environments

So far we have dealt only with economies that are stationary. The extension of the notion

of organizational equilibria to these environments is not obvious: What does it mean that agents

in the same situation as previous agents have to do as well as those agents? To partially address

this issue, we provide in the next subsection an example of how a growing economy can be

transformed into a stationary one to which the notion of organizational equilibria can be applied

directly. After that we offer some thoughts on the extension of the notion to other types of non-

stationarity.
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8.1  Growing Economies

We have established our result for stationary economies. An interesting extension of our

equilibrium concept is to a class growing economies. Let an economy be growing by a constant

factor γ > 1. This means that the endowment of generation t is },{ zyt eeγ . Assume that prefer-

ences of generation t over goods (xt ,xt+1) can be represented by a homogenous of degree one,

strictly quasi-concave function u(xt ,xt+1).

We proceed to transform this growing economy into a stationary one. Let t
t

t xx −γ=ˆ  for

all t. With this transformation endowments for all generations are {ey,ez}, which are stationary.

Lemma: )ˆ,ˆ()ˆ,ˆ(ˆ 11 ++ γ= tttt xxuxxu  represent preferences of generation t over )ˆ,ˆ( 1+tt xx .

Proof. The result follows from function u being homogenous of degree one. 

This establishes that the environment is stationary. The organization equilibrium is well-

defined and is the solution to the program in section 6.

8.2  Other Types of Non-Stationarity

Consider an economy like that in our main example except that the first agent has an en-

dowment of {30,1} rather than {3,1}. What allocation will our equilibrium pick? Note first, that

log 30 > 2 log 2 which implies that no matter what, the first old will be better off than any agent

after him, yet positive transfers from the young to the old are Pareto improving. The issue is, Can

the first old obtain any transfers? The answer is yes. The first old could get as much as 3/11̂ =x

(the first period transfer in our main example). The second old cannot do better by proposing the

same plan.

What about the case when the endowment of the first old is {2,1}? What can the first old

get? The first old could get one unit of the good as the transfer. Note that the second old could



19

not get the same unit as a transfer because the second old has a bigger endowment than the first

old. Note, moreover, that the first old does not attain higher utility than the second; if it did, the

second old could destroy part of its endowment and restart the economy. The principle then that

should follow of what it means to do as well in the same situation is that higher transfers can be

attained as long as the utility is, not higher; otherwise, transfers cannot be larger. Note that in this

example, things are relatively easy because both economies are identical from period 2 on. For

general forms of non-stationarity it is much harder to implement the notion of doing as well if in

the same situation.

9.  Conclusion

In this paper we have argued that for stationary OLG type environments with endow-

ments tilted towards the young, standard equilibrium concepts are not very good. We provide a

new equilibrium concept, organizational equilibrium, based on voluntary participation in a coali-

tion, suited for the OLG environment (and we hope others) that requires a form of participation

constraints that is rooted in the notion that members have the option to start over. We have

shown that for the standard OLG environments the equilibrium exists and is unique. We have

also discussed how in the presence of assets, organizational equilibrium coincides with competi-

tive equilibrium, a reassuring property. We also have some extensions to non-stationary envi-

ronments.
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Footnotes

1On occasion we will make the interpretation of a measure one set of identical, atomical

agents. This is not a crucial point since the key interactions are intertemporal. What is valid for

one agent is valid for a measure one of agents, except in section 7, where we show the equiva-

lence of organizational and competitive equilibria.

2The literature has sometimes described this property as “printing their own money” (see

Esteban (1986)).

3However, this notion has already been used in the literature by Becker (1995) with a

very different meaning in economies with capital accumulation.

4Recall the subtitle of Samuelson’s (1958) original piece.

5We use the Debreu (1954) definition of valuation equilibrium, which requires all mar-

kets to clear with equality.

6In fact we proceeded backward by finding the sequence of markets equilibrium and then

implementing it as a valuation equilibrium by an appropriate choice of the commodity space.

7It may be interesting to point out where the proof of the first welfare theorem breaks

down. It is at the point where the value of the commodities chosen by all agents is used, to show

that it should be higher than that of the endowment which yields a contradiction. In this model

economy the value of most feasible allocations, including both autarky and any Pareto superior

one, is infinite, which breaks down the argument that yields a contradiction.

8Zakharova (2000) shows that in certain OLG environments with a state variable, the T

operator has a maximal fixed point.
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Figure 1:  Autarky (B) and stationary optimal (A) allocations.
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Figure 2:  Proposed allocation.


