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1. Introduction

This paper considers the incorporation of uncertainty and information into coop-
erative game theory. In particular, we examine the cooperative garﬁes that arise from
economies with asymmetric information. To simplify, we focus on the case of general
equilibrium models of perfectly competitive pure exchange economies.

One frequently encounters the opinion that cooperative game theory cannot eas-
ily be adapted to include informational considerations. In fact, economists’ interest in
asymmetric information is sometimes cited as an important reason for the recent empha-
sis on noncooperative models of strategic behavior, especially in fields such as industrial
organization and corporate finance. I disagree with this viewpoint—one can put asym-
metric information into cooperative games, albeit at the expense of certain complications
which may lead to somewhat surprising results.

Since we stress cooperative games that are derived from economies with asymmet-
ric information, we first digress to present a more general, brief survey of the relation-
ships between cooperative games and perfectly competitive exchange economies. After
summarizing these results on market games in the next section, we proceed to introduce
information in the following section. Section 4 is devoted to Wilson’s article on the core
with asymmetric information. The derivation of cooperative games from economies with
asymmetric information is examined in Section 5, as preparation for analysis of the core
and the value in the following two sections. Section 8 concludes by presenting an alter-
native approach based on Harsanyi’s formulation of noncooperative games with incom-
plete information.

2. Market Games

To fix notation, let IV be the (finite) set of traders in the economy (or players in
the game), and denote a typical agent by : € N = {1,...,n} (where n is the cardinality
of the set V). Suppose that the number of commodities present in the economy is the

finite positive integer £, and take Rﬁ_ to be the consumption set of each trader 1 € N.



Traders are specified by initial endowment vectors and utility functions where, for each

i € N, e; € RS and u; : RS — IR is a continuous (or, more generally, upper semicontin-
uous) and concave function representing the preferences of trader i € N. By definition,
a coalition is a nonempty subset of agents; the grand coalition N is a coalition as is any
nontrivial collection of agents. Each coalition induces a smaller economy containing only
those traders who belong to the coalition; such subeconomies are called submarkets, and
they induce subgames.

An n-player cooperative game with transferable utility (or TU game) is a function
v: 2N — R with v(f}) = 0, where 2V denotes the set of all subsets of N = {1,...,n}.
The TU cooperative game induced from the pure exchange economy as above, in which
each trader ¢ € NV has consumption set JRY, initial endowment ez: € RR%, and utility
function wu; : Rﬁ_ — IR which is assumed to be upper semicontinuous (so that max-
ima in the definition below are well defined), is given by v : 2¥ — IR with v(§) = 0
and, for all § C N with § # 0, v(S) = max{ %uz(x,)lxz € R foralli € S and
.Z z; < Z e;}. [With sufficient monotonicity, t.:ne inequality sign can be replaced by an
;Ziality.]zeIi words, v(S) is the maximum total utility that the players in S can achieve
by redistributing their own resources; if members of coalition S were to pool all of their
initial endowments and redistribute these goods, so as to maximize the total utility of
the entire coalition S, the resulting sum would equal v(S).

The TU core of the n-person TU game v is defined to be the set of all payoff vec-
tors w = (wy,...,w,) € IR™ such that (1) (wy,...,wy,) is feasible (for N): 2 wi <
v(N), and (2) (ws,...,w,) is not blocked by any coalition: 2 wi > v(8) forz:ﬁrS C N.
Feasibility of w € IR™ says that (w1,...,w,) is an z'mputatz'o;ze?or v. The second property
is sometimes deséribed by the statement that no coalition can improve upon w.

Transferable utility games with nonempty cores [note that the core always exists]

can be characterized by a balancedness condition. If N is any finite set, a balanced fam-

ily B of subsets of N is B C 2V for which there exist balancing weights {vs}gcp With



vs > 0 (vs € IR) such that for each i € N, Z- vs = 1. Obvious examples of balanced
families include N itself (with weight yn = 15)9;11(1 B = {{1},...,{n}} (again with each
balancing weight equal to one). For a nontrivial example, consider the two-player coali-
tions of N = {1,2,3} and set y¢ = 1/2 for S = {1,2}, S = {1,3}, and S ={2,3}. ATU
game on N is said to be balanced if, for all balanced collections B of subsets of IV and all
collections of associated balancing weights {vs}gcp, We have s%s vsv(S) < v(N). [Note
that the left-hand side of this inequality differs from the operation of taking convex com-
binations in that we could have ) g.z7vs > 1.]

Theorem 1. A finite TU game has a nonempty core if and only if the game is bal-
anced.

This result was discovered independently by Bondareva (1962) and Shapley (1967).
Its proof involves demonstrating that a certain system of linear inequalities has a solu-
tion precisely when the constraints defining balancedness are satisfied.

For an example of a game that fails to be balanced, again let N = {1,2,3}, and
define (with an obvious abuse of notation) v(123) = v»(12) = v(13) = v(23) = 1 and
v(S) = 0 otherwise. Then v is not balanced, since examination of the balanced family
of two-player coalitions would require v(12)/2 + v(13)/2 + v(23)/2 < v(123) = 1, an
obvious contradiction. Intuitively, we know that the TU core of this game is empty, be-
cause any two-player coalition that does not include the best treated player(s) can block
any (feasible) imputation. The game describes a situation (“three men and a trunk”) in
which three people discover buried treasure which can be removed from the jungle only
if at least two individuals carry it.

The Bondareva-Shapley Theorem is of particular interest because it applies to all
market games as described above. Moreover, there is an equivalence between games sat-
isfying a stronger balancedness property and those games that can be derived from pure
exchange economies satisfying the conditions stated above. A totally balanced game is

one for which every subgame is balanced.



Theorem 2. Every market game derived from a finite pure exchange economy in
which each trader i has consumption set RS, initial endowment e; € IR%, and utility
function u; : Bﬁ_ — IR, which is upper semicontinuous and conccwé, is totally balanced.
Conversely, every n-player totally balanced TU cooperative game can be generated by a
pure exchange economy as above with £ = n.

This result was discovered by Shapley and Shubik (1969) in their classic study of
market games. The proof in one direction uses the balancing weights to define feasible
allocations that are convex combinations of allocations available to smaller coalitions.
Concavity of utilities then implies, by Jensen’s inequality, that total utility cannot be
forced to decrease in the larger coalition. For the converse, Shapley and Shubik (1969)
construct very special economies in which each player’s payoff essentially depends only
on the player’s allocation of one commodity. [Note that the relations between exchange
economies and totally balanced games cannot be described by a one-to-one correspon-
dence because the space of n-player games can be identified with a Euclidean space of
dimension 2" — 1, whereas the space of n-agent exchange economies parameterized by
endowments and utilities must be infinite-dimensional. More specifically, changing a
trader’s utility function off of the compact set of feasible allocations cannot alter the TU
game generated by the economy.]

Cooperative games with nontransferable utility (or NTU games) can similarly be
derived from economies. Of course, NTU games are preferable in general for economics,
as they do not require one to impose the assumption that each agent’s preferences are
representable by a quasilinear utility function in order to justify the addition of payoffs
of different agents. [A quasilinear utility is a function of the form u(z) + m, where z can
be a vector of goods and m denotes the quantity of a commodity—such as money—in
which side payments are made.]

Recall that an NTU cooperative game with player set N = {1,...,n} is a corre-
spondence V : 2V — IR™ such that, for all S C N, the sets V(S) are nonempty, closed,
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and comprehensive [i.e., V(S) 2 V(S) — R%], and, moreover, the V(S) sets are cylinder
sets in that if u = (u1,...,u,) € V(S) and if v/ = (u},...,u}) is such that u; = v} for all
i € S, then v’ € V(S). I follow the convention that V() = IR™. Déﬁne the projections of
the V(S) sets into the subspace of payoffs for players in S by V(S)g = {u € V(S)|u; =0
if j ¢ S}. Note that V(V)y = V(N) and V(0), = {0}. In addition, for each § C N,
V(S)s generates the cylinder set V(S).

A cooperative game V' : 2V — IR™ with nontransferable utility is balanced if,
for all balanced collections B on N with associated weights vz for T € B, V(N) 2
> Y7V (T)z. [Note that since B = {N} with yx = 1 is a balanced collection, taking
fIfeB union over all balanced collections on the right-hand side gives a subset of IR™ which
precisely equals V(IV).] This definition of balancedness is well suited for economies with
concave utilities. An alternative definition, which Billera (1974) terms “quasibalanced-
ness,” is weaker. Say that an NTU game V : 2V — IR™ is quasibalanced if, for all bal-
anced collections Bon N, (| V(T') C V(N). Every balanced game is quasibalanced.
As in the case of transferagliButility, games with nontransferable utility are said to be
totally (quasi)balanced if all of their subgames are (quasi)balanced.

The cdre of an NTU game is defined to be the set of feasible imputations that
cannot be blocked—or improved upon—by any coalition. Formally, u = (ug,...,u,) €
IR™ belongs to the core of V : 2V — IR™ if and only if u € V(IV) and there does not exist
a coalition § C N (with § # 0) and a payoff vector v’ = (ul,...,u,) € V(S) such that
ui > u; for all i € S. Note that, by definition, the core always exists—every game has
a core, although it may be empty. Of course, we are interested in games with nonempty
cores. One rationale for the core as a solution concept is the observation that, although
not all points in the core may be attractive solutions, whenever the core is nonempty we
may be justified in eliminating noncore outcomes from furﬁher consideration.

Theorem 3. Every quasibalanced NTU game has a nonempty core.

This result was proved by Scarf (1967). The implication holds in one direction
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only; in contrast to the TU case, one do‘es not have equivalence. Moreover, because ev-
ery balanced game is quasibalanced, Scarf’s Theorem implies that every balanced game
(as defined above) has a nonempty core. -

Now let us return to our model of an exchange economy and show how it generates
a well-behaved game with nontransferable utility. As before, we permit each coalition to
redistribute its own resources provided that every coalition member receives an alloca-
tion belonging to the consumption set IR . Accordingly, define V : 2V — R™ by
V(D) = IR and for each nonempty S C N, V(S) = {(ws, ..., w,) € IR"| there exists
(#1,+.-,%a) € R™ with 3 z; < ) e;, z; € RS for each i € §, and w; < u;(z;) for all
e S}. i€S i€s

By definition, the V(S) are comprehensive cylinder sets. They’re compactly gen-
erated (and, hence, closed as the sum of a closed set and a compact set) by the upper
semicontinuity of utility functions. This implies that each V(S) set is bounded above in
all of the coordinates corresponding to players in S or, equivalently, that the V(8S)s sets
are bounded above. Moreover, concavity of utility functions implies that each V(S) or
V(S)g set is convex.

Finally, the economic model specified above gives rise to an NTU game which is
totally balanced. The proof uses convex combinations of feasible allocations and concav-
ity of utilities. This implies the following desirable property.

Theorem 4. A finite pure exchange economy, having n agentsi = 1,...,n with
consumption sets Rf,_, initial endowments e; € Bﬁ_, and utilities u; : Rﬁ_ — IR which are
assumed to be concave and upper semicontinuous, generates a totally balanced NTU game
so that the game and all of its subgames have nonempty cores.

Billera (1974), Billera and Bixby (1974), and Mas-Colell (1975) examine whether
totally balanced NTU games satisfying the properties mentioned above can be generated
by economies. The results are less sharp than those for the TU case and require techni-

cal restrictions which are not discussed here.



An extremely useful reference for much of this material is the book by Hildenbrand
and Kirman (1976). The Shapley and Shubik (1969) article is also accessible. Need-
less to say, all students interested in cooperative game theory shouid read the following
papers relating balancedness to the property of having a nonempty core: Bondareva
(1962), Shapley (1967), and Scarf (1967).

3. Economies with Asymmetric Information

This section explains how one can add information to the basic model of a pure
exchange economy. We are interested in situations in which different agents may initially
possess different information. Moreover, the information must matter to traders.

To model these phenomena, we begin with an arbitrarily given abstract set  of
states of the world. Elements w of the set 2 are assumed to compietely describe the rel-
evant uncertainty in the universe. A o-field F of measurable subsets of Q is also given.
Subsets of 2 that belong to F are also termed events. Technically, (2, F) is a measur-
able space. Finally, (2, F) is endowed with a (o-additive) probability measure p. [This
could be generalized to permit agents to have different subjective probabilities regard-
ing the ez ante likelihood of various events in 2, provided that all agree about the null
" events—those which occur with probability zero.]

The information of trader ¢ € N is given by a sub-o-field G; of . Notice that in-
formation becomes an ez ante concept, in that it means the capacity to condition one’s
actions on a particular sub-g-field, where the agent knows which sub-o-field can be used.
Thus, information is like an entire random variable (or measurable function from  to
IR), rather than a single observation of the random variable (or a real number which
equals the function evaluated at a specific @ € ). Another analogy is that one should
think of information as access to an instrument or measuring device, not as a measure-
ment which is the output of the instrument. In particular, information is not equivalent
to the fact that a certain state @ has actually occurred. Note that asymmetric informa-

tion is sometimes called differential information, while incomplete information properly



refers to situations in which G; is smaller than F, regardless of whether the G; may be
different for different agents. Symmetric information is a special case of asymmetric in-
formation, and complete information is a special case of incomplete- information.

A simpler model which captures most of the main ideas starts from a finite set Q
of states of the world, where each state occurs with strictly positive probability. Agents’
information is specified by partitions of 2. When state w occurs, the agent learns the
(unique) element of the partition containing w.

States of the world can also be interpreted as signals (about some underlying fun-
damental states of the world). waever, rather than using dual terminology to include
this case, I prefer to think of a state of the world as an n-tuple of the signals that have
been received by each agent.

The state of the world can affect traders’ endowments and utilities. We formal-
ize this by two measurable functions defined on Q. For each i € N , trader ¢’s initial
endowments are given by e; : O — Bﬁ_ which is G;-measurable. The restriction to Gi-
measurability (rather than F-measurability) means that trader 4 must know his or her
own initial endowment; the endowment vector can depend only on the trader’s own in-
formation. If  is infinite, we assume further that each e; is uniformly bounded almost
surely in order to avoid technicalities; this condition is automatically satisfied for finite
(2. State-dependent utilities are frequently written as functions Us - Rﬂ_ x Q@ — IR which
are continuous on JRY and F-measurable on 2 (so that they’re jointly measurable). We
use F-measurability instead of G;-measurability, because we envision that traders even-
tually learn their true utilities upon consumption of their allocations, but they may not
fully know their state-dependent utilities when they make trades or choose strategies.
The essential uncertainty here pertains to one’s own preferences. We assume (again, to
avoid potential difficulties of a technical nature) that for almost allw € Q and alli € N ,
the utility functions u;(-;w) : RS — IR are not only continuous, but also strictly con-

cave and strictly monotone. [For technical reasons (based on the fact that proper regular



conditional probability distributions are defined only up to null sets) state-dependent
utilities should be specified by F-measurable functions U; : @ — C(IR%, IR), where the
space C(IR%, IR) of continuous functions from Rt to Ris endoweci with the Borel o-
field corresponding to the topology of uniform convergence on compact subsets, which
makes C(IR%, IR) into a Frechet space. All conditional expectations are taken with re-
spect to the induced image measure on C(IR%, IR), not on the abstract probability space
(Q, F, n). Here one assumes that for all ¢ € N and for almost all w € Q, U;(w) is strictly
monotone and strictly concave; it may also be convenient or necessary to assume that
the (unconditional) distribution on C(IR4, IR) has compact support for all ¢ € N.]

An important conceptual problem with asymmetric information models is that one
must carefully delineate those actions (i.e., trades or strategies) among which agents may
choose. Radner (1968) considers the question of what people can do in a market when
they have asymmetric information. He proposes that one should be able to verify one’s
own (net) trades. For example, you will never pay a strictly positive amount to sign a
contract with me stating that I will give you $100 if I do not have a headache tomor-
row morning. If you do, I can always tell you that I have a headache, and you can never
know that I’'m lying. [You also can’t prove to a third party that I'm lying, which ex-
emplifies the issue of verification rather than asymmetric information.] In competitive
equilibrium models, agents trade impersonally with the market, which means that one’s
own net trade should depend only on information available to the agent at the time the
market meets. Hence, the individual excess demand of agent ¢ should be G;-measurable,
which implies (because ¢; is G;-measurable) that #’s allocation is also G;-measurable.
Radner (1968) demonstrates that, in such models in which consumers have different con-
sumption sets because of the restrictions to subspaces of G;-measurable functions from
to Rﬁ_, competitive equilibria exist, provided that €2 or all of the G; are finite.

However, the appropriate informational restrictions in cooperative games are less

clear-cut. Do agents share their information freely within a coalition, or can coalitions



only make binding agreements based on information which is common to all members?
The same problem arises when one attempts to define Pareto optimality in asymmet-
ric information models. [A different approach involving interim efﬁ;:iency is explored by
Holmstrom and Myerson (1983) and more recently by Forges (1990, 1991).]

4. Wilson’s Article

In a seminal article, Wilson (1978) examines the core of an economy with asym-
metric information. He focuses on the need to define the information of players in a
coalition when they (initially) have access to different information.

The analysis is performed in a pure exchange environment with finitely many
states. Initial endowments are assumed to be always measurable for every agent in every
coalition. Wilson (1978) first defines the abstract concept of communication structures
and then focuses on two special extreme cases: the coarse core, defined by the condition
that the information for all players in coalition S is precisely the sub-o-field /\ G; of
information that they have in common, and the fine core, defined by giving ;\f:;y
member of coalition S the sub-o-field _V G; of pooled information, so that the coalition
can use any information that was initi:xelfy available to any of its members.

Wilson (1978) then examines whether these two cores are nonempty. The intu-
ition is as follows: The use of only common information renders blocking difficult, so
that the coarse core is expected to be nonempty. However, blocking is easy with pooled
information, so that the fine core may be empty. To prove nonemptiness of the coarse
core, Wilson (1978) argues that a game he defines, in which each “player” consists of a
state-player pair, is balanced. For the fine core, he provides a counterexample with three
states and three players in which any feasible, efficient allocation for the grand coalition
can be blocked in some state by some coalition. |

However, when one contemplates these results in light of the market games litera-

ture and the relationships between balanced games and those with nonempty cores, the

intuition about easy versus difficult blocking seems problematic. Potential blocking al-
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locations should be compared to the set of allocations available to the grand coalition.
As in the earlier market games literature, one examines convex combinations (with bal-
ancing weights) of feasible allocations. Concavity guarantees that 'c.he utilities of convex
combinations dominate the average utilities of original allocations.

For the coarse core, this argument seems to fail. Convex combinations of ./\ G;-
measurable and ./\ G;-measurable functions need not be ' N\ G;-measurable. Ierc;vever,
the paradox is sglexf;d when one notices that Wilson’s (19;§3§Unz;odel uses '/\ G; as the
information for subcoalitions S C N with S # N and reverses this logic :f)stake V G; as
the information for the grand coalition V. This explains the apparent inconsistefgr of
the two strategies for proving that the core is nonempty. _

In contrast, the argument that market games are balanced seems to apply to the
fine core, as all convex combinations are measurable with respect to the information
'V _G; of the grand coalition. Yet, detailed examination of Wilson’s (1978) counterex-
2ateril\rple indicates that the blocking he employs to show that the core is empty must oc-
cur ez post. In Wilson’s (1978) argument, some coalition blocks a given feasible alloca-
tion by dominating it in some particular state of the world. This would be consistent
with a parallel state-by-state definition of the feasible and efficient allocations, so that
in this case the economy with asymmetric information essentially reduces to three dis-
tinct economies in which all agreements and all trades take place after agents learn their
information about the particular state of the world that has occurred.

Kobayashi (1980) obtains some results extending Wilson’s (1978) coarse core using
the concept of common knowledge. He also permits the set €2 of states of the world to
be infinite.

5. Market Games with Asymmetric Information
In order to study cooperative solution concepts for economies with asymmetric in-

formation more systematically, one must derive the TU or NTU games that are gener-

ated by such economies. Standard results from game theory then apply, provided that
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the induced games are well defined and satisfy the necessary assumptions. Moreover,
failures of certain solution concepts—such as the potential emptiness of the core—can be
understood in terms of the game theoretic hypotheses that are vioiated as a consequence
of asymmetric information. My formulation of market games with asymmetric informa-
tion is based on ez ante agreements within coalitions. In particular, blocking can occur
only before agents learn about the state of the world that has occurred, so that all pay-
offs in the resulting games consist of (unconditional) expected utilities (of information-
conditional allocation functions). An advantage of this approach is that it enables agents
to engage in risk-sharing trades and to write contracts that Pareto dominate those avail-
able with er post agreements and ez post blocking.

Before the market games can be defined, one must specify t.he information avail-
able to every agent in every coalition. Let H; denote the information that agent ¢ € S
can use as a member of coalition S. Assume that 77 is a sub-o-field of F and that e; :
IRY — IR is measurable with respect to H7 forall § 5 iand alls € N. Note that all
members of a coalition need not be restricted to the same information; HS # HZ is per-
mitted. A natural assumption is that #F = G; for all § = {¢} and all i € N.

Given an economy with asymmetric information as modeled in Section 3
and given the sub-o-fields 7 for all S C N (S # 0) and all i € S, define the
induced cooperative game v : 2¥ — IR with transferable utility by v(0) = 0 and
v(8) = max { > J wi(zi(w); w) du(w)| for all 4 e S, z; : Q@ — RE is H5-measurable and
> zi(w) = Zzeef(?u) a.s.} forall SC N with S # 0.

b Theorfe; 5. The induced TU game v defined above is well defined.

To show that the game is well defined requires proving that the maximum exists.
Doing so gives rise to technical difficulties (to be discussed briefly below) whenever Q is
finite.

Similarly, one can define the derived NTU games. Let V : 2¥ — IR™ be defined by
V(0) = R" and, for § C N with S # 0, V(S) = {(w1,...,w,) € IR™| there exist -
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measurable functions z; : @ — RE with 2 zi(w) = ) ei(w)a.s. such that w; <
Jui(zi(w);w) dp(w) for all i€ S}. < <

? Theorem 6. The induced NTU game is well defined. Moreov-er, for all S C N, the
V(S) sets are convez, and they are compactly generated whenever S # §.

Closedness of the V(S) sets is roughly equivalent to existence of the maxima for
TU games; this is difficult when ( fails to be finite. Convexity follows from concavity
of utilities, while the property of being compactly generated comes from the uniform
boundedness of initial endowments and upper semicontinuity of utilities.

If © is infinite, the argument exploits the characterization of weakly and strongly
compact convex subsets in £ spaces, especially the theorem of Dunford and Pettis
(1940). [See Dunford and Schwartz (1958) or Rudin (1973) for tec.hnical background
material.] Details appear in Allen (1991a, 1991b, 1991c). Page (1993) extends these
theorems to allow the underlying commodity space JR to be replaced by an
infinite-dimensional space.

6. Cores with Asymmetric Information

In this section, we utilize balancedness conditions on the derived TU and NTU
games to obtain nonempty cores with asymmetric information. A summary of the finite
state case appears in Allen (1994), while the basic general references are Allen (1991b,
1991c).

Theorem 7. A sufficient condition for balancedness of the derived TU or NTU
game is that for all coalitions S C N and all agents i € S, Hf C HYY. Total balancedness
holds if ’Hf C HT wheneverie SCTC N. In particular, if HY C ’va wheneveri € S,
then the core is nonempty, while ’Hf - ’H;P wheneveri € S C T C N implies that the
cores of all submarkets are nonempty.

The proof is based on the observation that sums of functions measurable with re-
spect to different sub-o-fields are measurable with respect to the smallest o-field gener-

ated by all of the sub-o-fields. The second statement follows from Bondareva (1962) and
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Shapley (1967) or Scarf (1967).

Theorem 7 implies that the fine information [i.e., Hf = o( |J G;) whenever i € S]
€S

3
core in the sense defined here with ez ante blocking is nonempty. It also implies that

the private information [i.e., Hf = G; for alli € S and all coalitions S C N] core is
nonempty. It does not apply to the coarse information [?-tf = ﬂ Gjfori € § C N
core and, in fact, counterexamples are not too difficult to find. JIigwever, a consequence
of the theorem is that Wilson’s coarse core [ = N Gjfori € SifS # N and

HY = o .U G;)] is necessarily nonempty. Of coursfinany other specifications for in-
formationgseli\;ring within coalitions are possible, and the theorem provides sufficient (but
not necessary) conditions for such models to yield nonempty cores.

Yannelis (1991) shows that exchange economies have private information core allo-
cations. Allen (1992) provides a different proof, under somewhat different assumptions,
which follows directly from the market games approach. In Allen (1993a), private infor-
mation sharing is related to a condition, termed publicly predictable information, stating
that any single agent’s information can always be deduced from the pooled information
of all other coalition members.

7. Values with Asymmetric Information

Having derived cooperative games from economies with asymmetric information,
one can apply any of the myriad of alternative (T'U or NT'U) solution concepts, pro-
vided that the requisite hypotheses are satisfied by the derived game. The value is only
one of many solution concepts, albeit it is one that has nice properties and has proved
to be extremely useful for many problems in economics. Thus, it is discussed here for
illustrative purposes.

Theorem 8. The TU Shapley value of the derived game exists and is unique. The
NTU value exists if H? C HYY wheneveri € S.

The qualification for NTU games is needed for monotonicity of the A-transfer

games. See Allen (1991a) for details, which use results from Aumann and Shapley (1974,
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Appendix A) and Shapley (1969).

Krasa and Yannelis (1994) show via a direct argument that economies with asym-
metric information have value allocations. They do not examine all of the information
sharing possibilities that are covered by the above argument.

8. The Harsanyi Approach

A different framework for the analysis of information in cooperative game the-
ory is based on Harsanyi’s (1967-68) formalization of noncooperative games with in-
complete information. Recall that a noncooperative game is specified by a player set
N = {1,...,n}, strategy sets S; for each i € N, and payoff functions ¥; : H;enS; =+ R
for each ¢ € N. To capture the notion of incomplete information, Harsanyi (1967-68)
replaces the single payoff function for each player by payoff functions that are parame-
terized by a type space. The basic idea is that a type for player i is taken to consist of
the player’s own payoff function and his or her beliefs about the payoff functions of other
players, which are distributions (possibly depending on the player’s own type) over the
product of other players’ type spaces.

If one contemplates this approach in the context of cooperative theory, problems
arise even with transferable utility. For instance, when % learns his or her own type with
certainty, does player ¢ then know the entire game v : 2V — IR in characteristic function
form—in which case, either beliefs are inconsistent or there is no asymmetric
information—or does player ¢ only have some belief about the correct distribution over
possible characteristic functions? How do players make enforceable agreements within
coalitions when they believe they’re playing different games—i.e., when their beliefs over
v(S) are different? Even if coalition members agree about v, they may disagree about
how they can actually achieve the maximal worth of their coalition. For example, you
and your spouse could both believe that you can double your household wealth, but you
may disagree over whether this can be done by buying orange juice futures or by

shorting Singapore stocks. What, then, is the worth of such a coalition?
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These problems can be interpreted as suggesting the need to include functions
from strategy sets or actions to payoffs as part of the primitive description of a coop-
erative game with incomplete information. Under complete or syminetric information,
cooperative game theory usually supresses any explicit notion of strategies or actions, al-
though implicitly, when we say that v(S) is the worth of coalition S, we really mean that
the players of coalition S together have some (feasible) joint strategy that enables them
to earn v(S). Under incomplete information, the strategies should be explicitly included
in our cooperative games. Observe that this issue did not arise for market games with
asymmetric information because we did write the strategies in the definition of v(S) and
V(S); the strategies were state-dependent net trades (or state-dependent allocations) for
each player in the coalition.

A pathbreaking article by Myerson (1984) explores such a formulation of cooper-
ative games with incomplete information. For each coalition S, let Ds denote the set of
actions available to S, and assume that Ds x Dy C Dsur when SNT = (. [Thisis a
superadditivity condition.] Take the set 7; of types for player ¢ to be a finite set for all
i € N; assume that all combinations of types [i.e., all n-tuples (¢1,...,%n) € WienTi]
occur with strictly positive probability. Write 7s = IL;jecs7; for the set of profiles of
types in the coalition S. Let w;(d,%1,...,%,) be the payoff to player ¢ € N if the grand
coalition N chooses strategy d € Dy when players’ types are (¢1,...,t,) € 7. This
model permits externalities, although there is no obvious way to define subgames ex-
cept by having the subgames depend on some given type realization and action of the
complementary coalition. [This situation is worse than in cooperative games with com-
plete information in that, while a coalition can perhaps observe the action of its comple-
ment, the coalition may have no way to ascertain the type drawings of players who do
not belong to the coalition.] Myerson (1984) further assumes the consistency condition
of Harsanyi (1967-68) that there exists a probability p on 7 such that its conditional

distributions satisfy p;(tyi(|t:) = p(t)/ > p(t:, sys(), where the summation is taken over
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8yi( € Tyi(- Then a cooperative game with incomplete information and player set NV is de-
fined by ((’Ds) SCN,507 (73 W) sens p) satisfying the above assumptions. Myerson (1984)
studies bargaining solutions in such games. -

This model forms the basis for recent research by Allen (1993b), Ichiishi and Idzik
(1992), and Rosenmiiller (1990), among others. As this work focuses on issues of incen-
tive compatibility and, hence, relates to implementation, I do not discuss it further here.
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