Federal Reserve Bank of Minneapolis
Research Department Staff Report #170

May 1994

Alternative Computational Approaches to
Inference in the Multinomial Probit Model

John Geweke, Michael Keane, and David Runkle*

Federal Reserve Bank of Minneapolis and
University of Minnesota

ABSTRACT

This research compares several approaches to inference in the multinomial probit model, based on Monte-
Carlo results for a seven choice model. The experiment compares the simulated maximum likelihood
estimator using the GHK recursive probability simulator, the method of simulated moments estimator
using the GHK recursive simulator and kernel-smoothed frequency simulators, and posterior means using
a Gibbs sampling-data augmentation algorithm. Each estimator is applied in nine different models, which
have from 1 to 40 free parameters. The performance of all estimators is found to be satisfactory.
However, the results indicate that the method of simulated moments estimator with the kernel-smoothed
frequency simulator does not perform quite as well as the other three methods. Among those three, the
Gibbs sampling-data augmentation algorithm appears to have a slight overall edge, with the relative
performance of MSM and SML based on the GHK simulator difficult to determine.
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1. Introduction

The multinomial probit is an appealing model of choice behavior because it allows a
flexible pattern of conditional covariance among the latent utilities of alternatives. Nevertheless,
multinomial probit applications have been limited because the required integrations of the
multivariate normal density over subsets of Euclidean space are computationally burdensome.
The computational simplicity of the multinomial logit has made it the model of choice for
applied work. Hov;/ever, because the multinomial probit model relaxes the assumption of
independence of irrelevant alternatives, it is generally preferred in principle to the multinomial
logit model (McFadden 1984, pp. 1395-458). Recently the method of simulated moments
(McFadden 1989, Pakes and Pollard 1989) and Gibbs sampling with data augmentation (Albert
and Chib 1992, McCulloch and Rossi 1992) have shown promise of making the required
computations in the multinomial probit model practical. The development of the highly accurate
GHK probability simulator (sce Geweke 1991, Hajivassiliou and McFadden 1990, and Keane
1990) has also led to renewed interest in simulated maximum likelihood (Albright, Lerman, and
Manski 1977) as a method for estimating multinomial probit models.

The objective of the research reported here is to provide a systematic comparison of the
numerical properties of different simulation based methods of inference in the multinomial probit
model. Rather than considering the performance of these methods on a single model for a single
data set, we attempt to control for a number of features of the inference problem, such as the
number and nature of the unknown parameters of interest, and the information content of the
data on which inference is based. Also, we investigate for the first time how the performance
of MSM estimation is affected by the type of probability simulator employed (i.e., GHK vs.

kernel smoothing).



While some investigators have examined the performance of particular estimators and
computational techniques, and Hajivassiliou, McFadden, and Ruud (1992), Borsch-Supan and
Hajivassiliou (1993), and Hajivassiliou (1992) have made systematic comparison of alternative
probability simulators, we are aware of only one systematic comparison of different estimators
per se: Keane (1994) compares method of simulated moments and simulated maximum likeli-
hood estimators for an eight period binomial probit model in a Monte Carlo study. This paper
is the first to compare performance of alternative methods of inference for the multinomial probit
model, and the first to examine how the relative performance of alternative methods differs
across model specifications and across different data sets.

In addition to addressing this main objective, this work introduces a new factor structure
for the disturbances that may help to alleviate the proliferation of covariance matrix parameter
problem in MNP models. We also illustrate Bayesian inference in a multinomial probit model
with a factor structure for the first time. (See Elrod and Keane 1994 for a discussion of factor
structures for probit models.)

The paper contains two separate Monte-Carlo experiments. In the first, we generate 10
artificial data sets from a seven alternative model, and compare the performance of the simulated
maximum likelihood estimator using the GHK simulator, the MSM estimator using the GHK and
kernel-smoothed frequency simulators, and posterior means using a Gibbs sampling-data
augmentation algorithm. We consider 9 different model specifications in which restrictions are
placed on different groups of parameters in order to determine how such restrictions affect the
relative performance of the methods. In this experiment, the performance of the MSM and SML

estimators using the GHK simulator, and the performance of the Bayesian inference procedure



using the Gibbs sampling-data augmentation algorithm, all clearly dominate that of the MSM
estimator based on kernel smoothing.

In the second experiment, we use actual data on ketchup purchases acquired from the
Nielsen company to construct regressors and estimate parameter values for a seven alternative
choice model. We then generate 50 artificial data sets using these parameter values and
regressors. We then compare the performance of MSM and SML based on the GHK simulator,
and posterior means using the Gibbs sampling-data augmentation algorithm. Here, significant
biases appear for all three methods, suggesting that, given the configuration of data and
parameter values, the sample size is not large enough for small sample bias to become neglig-
ible. Bayesian inference appears to have a slight edge in performance over the classical
methods, with MSM-GHK and SML-GHK difficult to choose between. Given the computational
cost of performing 50 replications, and given that MSM based on kernel smoothing was
dominated by other methods in the first experiment, we do not include it in the second experi-
ment.

The next section sets out the multinomial probit model and establishes notation, and
Section 3 describes the design of the experiments. Section 4 discusses computational issues for
classical inference, including probability simulation, the simulated maximum likelihood method,
and the method of simulated moments. Section 5 does the same for Bayesian inference, based
on the Gibbs sampler and data augmentation. The results of the experiments are presented in
Section 6. Section 7 concludes by giving our overall assesment of the performance of the
alternative methods across both experiments, presenting timing comparisons for the alternative
methods, and discussing how computation times for the methods would be likely to differ in

different modelling contexts.



2. The Probit Model

Let individual i choose among a set of mutually exclusive alternatives, j = 1, ..., L.

Assume that i’s utility from choice j is

(2. 1) uij = X;BJ + Z;j’)’j + Gij
where
x; is a k X 1 vector of individual characteristics (e.g., age, sex),

z; is a p X 1 vector of alternative-specific attributes faced by individual i (e.g., price,

quality),

€; is the alternative-specific disturbance in i’s utility from choice j.

The probit model is obtained by assuming the & have a multivariate normal distribution: ¢; =

(€15-+-,€65)" ~ IIDN(O,E).

The econometrician observes the utility-maximizing choice argmax;(u;) made by each of
N individuals, as well as the individuals’ characteristics and the alternative-specific attributes
they face, but does not observe the individual utilities. The econometrician desires to learn
about the ;, the v;, I, and the probability that individual i would make choice j.

The model (2.1) may be written in stacked form,
Yy = X8 + Zy + ¢,

where u; = (uj1,...,Uy)" and the arrangement of X;(J X q), Z,(J X 1), f(q X 1), and y(r X 1)
reflect cross-equation as well as zero restrictions on the §; and v,(q < Jk, r < Jp). It is well
known that this model is unidentified (see Bunch 1991 or Dansie 1985). Identification is

achieved by working with the differenced system



(2.2) ui=Xp*+ Ziy*+e, @(=1,.,N),e ~ IIDN@O,L%

where uj is a J X 1 vector with uf; = (uz—uy)/(0y;—20y;+03)"2, G = 1,...,J=1); ujy = 0;
var(e;;) = 1; and X3, Z;, B*, and y* are the corresponding appropriate transformations of X;,
Z;, 3, and v, respectively. (We provide a specific example of these transformations in the next
section.)
The corresponding log-likelihood function is
N J

(2.3) Ly(8*,7%,Z% = N1 Z; ):1 d; In PG| B%,v*, 2% X1, Z)),
i=1j=

where d;; = 1 if individual i chooses j and d; = 0 otherwise, and P | 8*,7*,2%,X;,Z;) = P(uj;
> uj V k[B*,y*,L*X;,Z]). This requires the evaluation of a (J—1)-dimensional integral,

which is computationally burdensome using classical methods (like quadrature) when J > 4

(Kahaner 1991).

3. Experimental Design

A. Experiment One

In the first experiment, the comparison of different methods of inference is made using

artificial data generated from a seven alternative model,

uy =By + BpXi + 1uZy + & G = LoD

& = (eil,...,ei—,)’ -~ IIDN(O,E).

Therefore, in the transformed model
(3.1) u’:‘, = Bj*l + B;ZX: + "Y:lz’; + '}’712’;7 + E,;j, G = 1,...,6); u’;—, = O;

(3.2) € = (€i1,..-,6ig)' ~ IIDN(,L*).



For our data generating process we adopt the parameter values 8;; = 8, =y = landX = L

In the transformed model, this gives:
(.3) x; =%, 255 = 25 851 = B2 = 0, 7j1 = IN2, v = —1N/2, and T* = 0.5(I+ee"),

where e denotes a 6 X 1 vector of units. The covariates were generated (X;,%y,..-,Z;7) ~
IIDN(0,Ig). The experiment used 10 artificial data samples generated from this model, each with
observations on 5,000 individuals.

Nine different models were considered. The nine models are the Cartesian product of
three alternative specifications for the coefficients, and three alternative specifications for the
variance matrix of the disturbances.

The first coefficient specification is as in (3.1), where all coefficients are unrestricted.
In the second coefficient specification, the coefficients v;; are restricted to be equal,

*

G4 ujj =61 + Bix + vu@i—zm) t &5 (= 1,...,6).
In the third coefficient specification, the coefficients B;; are restricted to be equal, as are the 8,
(3.5) UTJ = ’)’}:1(Zij“zi7) + E,;j, (i = 1,...,6).

The first variance specification is as in (3.2) where * is unrestricted. In classical
estimation, we parameterize ¥* by its Choleski decomposition Z* = AA’, where A is a lower
triangular matrix with typical element ay; a;; = 1. For Bayesian inference we report the
posterior means of the ay, for comparison with the classical estimates. In the second variance
specification L is diagonal with diagonal element N + §; where £; = 0. In differenced form this

gives

(3.6) T* = A(+ee') + D,



where D = diag(¢y,...,£;—1). To achieve identification, impose A = 1/2 to obtain
0.5I+ee’) + D. Then divide all elements of this matrix by 1 + £, in order to impose o7; = 1.
This gives

* = 0.5(1+&) " 'd+ee’) + (1+&,) "D

In the final variance specification we impose £ = I and £* = 0.5(I+ee’), which are the true

values for the assumed data generating process.

B. Experiment Two

In the second experiment, we work only with the second coefficient specification (3.4),
in which the 7;; are restricted to be equal, combined with the unrestricted covariance
specification (3.2). However, rather than using the parameter values By =Bp =73 = land
¥ = I that were used in the first experiment, we estimate these coefficient values using an actual
data set. Specifically, we use Nielsen scanner panel data on ketchup purchases by 1,153
households with 5,353 total purchase occasions to estimate the parameters of model (3.4), 3.2)
via MSM based on the GHK simulator.

The Nielsen ketchup data is described in detail in Keane and Elrod (1994). The
alternatives are 32 ounce sizes of DelMonte, Hunts, and Heinz, along with 18, 28, 40, and 64
ounce sizes of Heinz. The household specific characteristic x; that we use in estimation is
household size. The estimated model actually has four brand specific attribute variables z; for
j =1, 7. These are price and dummies for the presence of three different types of displays.
To arrive at a model identical in form to (3.4), in which there is only a single brand specific
attribute, we construct a single alternative specific variable which is a linear combination of the

price and the three display dummies, constructed in such a way that the coefficient ], on the



constructed z variable is equal to the estimated price coefficient. We then construct 50 artificial
data sets of 5,000 observations each, using as model parameters the brand intercepts, household
size and price coefficients and covari;mce matrix elements estimated on the Nielsen data, and
using as covariates the household sizes and constructed z variables from the first 5,000 purchase
occasions in the Nielsen data. Note that, although the actual data is a panel, since we estimate
a model that assumes no serial correlation in the unobservables, the artificial data we construct
also has no serial correlation.

Our goal in the second experiment is to provide a more stringent test of the performance
of the three preferred simulation based approaches to inference. In the first experiment, the
covariates were orthogonal. In this experiment the covariates are correlated. For example,
prices of different brands of ketchup will tend to move together due to competitive reactions,
and also because five of the alternatives are from the same manufacturer. In addition, certain
households will tend to shop at low price stores, while others shop at higher price stores. Such
correlations among covariates may reduce the information content of any sample of given size,
so that larger sample sizes may be necessary before small sample bias becomes negligible. An
additional factor is that the error structure estimated from the Nielsen ketchup data is
substantially more complex than that assumed in experiment one. There we assumed a simple
one factor error structure in the differenced model, with all error variances equal. A notable
feature of the actual data is that the estimated error variances differ widely across alternatives.
Hajivassiliou, McFadden, and Ruud find that the accuracy of probability simulators deteriorates
as error variances become more unequal, so that the covariance structure assumed in the second
experiment may be expected to lead to a deterioration in the performance of the simulation based

estimators relative to their performance in experiment one.



4. Classical Inference Using Probability Simulators

Classical methods of estimation are all based on the log-likelihood function (2.3). They
approximate the P(j | 8*,y*,Z*,X},Z}) using a probability simulator, and then apply conventional
procedures to solve moment conditions or maximize the log-likelihood function. We turn first

to three probability simulators, and then to two estimation procedures.

4.1 Alternative Probability Simulators
Frequency Simulator
Lerman and Manski (1981) proposed using a frequency simulator to approximate the

probabilities appearing in (2.3). A frequency simulator is constructed as follows:

1. For each of M replications ({ = 1,...,M), draw a J — 1 vector of independent
standard normal random variables, #?.
2. Lete;’ = Anf and compute uj’ = X8* + Ziy* + € for all £.

3. LetIff] = argmax;.; juif forall ¢.

M
4. Construct Pe(j| 8*,v*,2%,X},Z) = il,[— > IEJ’?'
i=1

This simulator is fast, easy to compute, and unbiased. However, the simulated probabilities 131;
are discontinuous in the parameters §8*, v*, and I*, necessitating use of derivative-free
algorithms to maximize the simulated log-likelihood function obtained when PF is substituted into
(2.3). There is also a positive probability that ?F = 0, in which case (2.3) cannot be computed

at all after substitution.
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Kernel-Smoothed Frequency Simulator

To avoid the discontinuities in crude-frequency simulator, McFadden (1989) proposed
the use of a kernel-smoothed frequency (KS) simulator. For kernel-smoothing parameter p and
each of M replications ({ = 1,...,M), begin with Steps 1 and 2 of the crude frequency
simulator. Then construct

-1
D 1 Q% A% Tk ¥ R 1 M Uif‘/p pdty uif‘/p
PKS(]IB 4 ’E szi’Xi) - M E el 1 + Ee Y .
=1 j=1

This simulator shares the advantages and disadvantages of kernel-smoothers generally. The
larger the value of p, the smaller the variance in the estimator ISKS, but the greater the bias. The
appropriate choice of p will diminish as the number of simulations M increases. While rates of
decrease sufficient to eliminate asymptotic bias are known (see Sections 4.2 and 4.3), the
determination of which p to use with a given M requires some costly experimentation as a

practical matter.

The GHK Recursive Simulator

The GHK recursive simulator, due to Geweke (1991), Hajivassiliou and McFadden
(1990), and Keane (1990, 1994), is based on the observation that the choice probabilities in the
multinomial probit model may be written as a sequence of conditional probabilities that may be
simulated recursively. This simulator is of particular interest, because in a rather exhaustive
study of many alternative probability simulators Hajivassilion, McFadden, and Ruud (1992)
concluded that GHK was the most accurate and reliable method of all those considered.

Some additional notation is needed to describe this simulator. Write equation j of (2.2):

* __ ¥ * *
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Here X;‘ denotes row j of X* and Z; denotes row of j of Z*. The i subscript is dropped in this

section only for ease of notation. Define:
i =ug—uj fork=1,...7, and @=¢ —¢ fork=1,17,
where it is understood that ; = 0. Further define the —1) X 1 vectors:

W= (ﬁj’-"vl‘%—lvﬁg+1:"':ﬁj)’ and ‘éj = (g%, j] 1, J+1’ ,e]),

Recall that alternative j is chosen if e — uj =< 0 for k = 1, ..., J which is equivalent to the
condition that all the elements of §; are less than or equal to zero.

Since @ is a linear transformation of e* the distribution of & is IIDN(0,%%) where & is
the corresponding appropriate transformation of I*. Let Al be the unique lower triangular
Cholesky factorization & = AJ(A))’. Then & = Aly where n = (ny,...,%j—1,%41,---»17)’ iS 2
(I—1) X 1 vector of independent standard normal randc;m variables.

Define @ij(7{,...,75) as the value of @i} when the random variables 7, through 7, are fixed
at the draw (n“{, ,‘np), where p < k. Forp =k, uf(('r;l, ;) is a number, while forp < k
it is a random variable. Then, the GHK simulator for the probability of alternative j is

constructed as follows:

(1) Draw %f such that i{(»f) < 0 forg =1,...,M

(j-:-l) Draw nf_; such that G_;(nf,....n{_) <0 fort =1,..,M

(G  Skip ;

(+1) Draw »f; such that &, ;(nf,....nf_nf,) <0 fore=1,.., M

(J—1) Draw 7¢_; such that ﬁ}_l(nf,...,nf_l,ng,rl,...,nf_l) <0 fort=1,..,. M
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and finally, construct:
ﬁGHKG IB*:V*’E*’X*’Z*)

M . j . J-1 .
= % > P < 0 I] Pfainl, o) < O] TT Bltinde.oonfopntyrseren) < O
=1 k=2

k=j+1

This simulator is unbiased and smooth in the model parameters. Note that construction of the
GHK simulator requires only draws from truncated univariate normals and evaluation of
univariate integrals. To draw from a truncated univariate normal is quite simple, since, if a
standard normal random variate 7 is desired such that a < 5 < b, one need only form 9 =
F~l[(F(b) — F(a))U + F(a)] where F(-) is the standard normal distribution function and U is

a uniform random variate on [0,1].

4.2 Simulated Maximum Likelihood (SML)
Albright, Lerman, and Manski (1977) and Lerman and Manski (1981) proposed

maximum likelihood using (2.3) with 131;(-) in lieu of P(+),

—

Ln(B*, 7%, 5% = N1

N
i=1

Y diinlPeG | B*,v*, 2%, X5, ZD)].
j=1

If M/N'2 - o0 as N - oo, then this estimator is consistent (see Lee 1992 or McFadden and
Ruud 1992). The same M/N'2 - oo condition guarantees consistency of the maximum
likelihood estimator based on Pgyy in lieu of P(+), and of the maximum likelihood estimator
based on Pygg(+) in lieu of P(-) provided that p -» 0 appropriately as N - . None of the
estimators is consistent in N (with M fixed) since they all provide biased evaluations of In P(-).

SML based on the frequency simulator has two undesirable characteristics. First, f,N will

be discontinuous in 8*, y*, and I*, precluding the use of the gradient methods for optimization
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and statistical inference. Second, a simulated choice probability of zero precludes construction
of Ly. If the frequency simulator is replaced by a smooth probability simulator that is bounded
away from zero, such as the kernel-smoothed or GHK simulator, these problems are avoided.
However, Ly still provides a biased evaluation of Ly, for fixed M. An important open question,
which we examine in this paper, is whether or not this imparts a substantial bias to the simulated

maximum likelihood estimator.

4.3 Method of Simulated Moments (MSM)
MCcFadden (1989) and Pakes and Pollard (1989) observe that the solution of the simulated
moment conditions
N J

N_lz:l El wl_][dl_} - 13(] lﬂ*,Y*,E*,Xi,Zi)] = Oa
i=1 j=

where Wj; is a set of instruments and P(+) denotes any unbiased probability simulator, will
produce estimates of B8*, 4*, and I* that are consistent in N, with fixed M. Use of biased
probability simulators also res;xlts in consistent estimates if the bias is o®N~1"?). In the case of
f)Ks: this condition requires that p > O appropriately as N - o. Since simulation is used to
obtain the moment conditions, McFadden (1989) called this estimator the Method of Simulated
Moments.

McFadden (1989) points out that the instruments (JP(-)/36)/P(+) are asymptotically
optimal if M — oo, where 6 is the vector of free parameters in 8%, y*, apd ¥*.  Consistency

also requires that the draws used to form 9P(-)/6 be independent of those used to form dy —

PG |B*,v*, T, X, Z).
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5. Bayesian Inference Using the Gibbs Sampler

Bayesian inference using the Gibbs sampler (Gelfand and Smith 1990) and data
augmentation (Tanner and Wong 1987) has been applied to the multinomial probit model by at
least two other sets of investigators (Albert and Chib 1992, McCulloch and Rossi 1992). Here,
we describe the essentials of the method.

In conjunction with the log-likelihood function (2.3) posterior densities corresponding to
various priors are easy to construct as formal expressions. The essential difficulty in applying
any of these expressions is integrating over the unobserved components u;, and in Bayesian
inference there is the further complication of integrating over the parameters 8*, y*, and Z*.
The Gibbs sampler with data augmentation resolves both difficulties in a systematic way. We
describe the method in turn for three variance structures discussed in Section 2.

The third variance structure is simplest: X is séalar, and hence ¥* = 0.5 + 0.5ee’,
where e is a (J—1) X 1 vector of units. Let the priors on 8* and y* be diffuse: wpx(B*)
constant, 7. x(y*) o constant. The essénce of Gibbs sampling and data augmentation is that,
under weak conditions widely satisfied by econometric models (including this one), successive
sampling from conditional distributions produces a Markov chain which converges in distribution
to the posterior distribution (Tierney 1991, McCulloch and Rossi 1992, and Geweke 1992). So,
to implement the Gibbs sampler, start by choosing initial values for the model parameters 8* and

v*. Then, in each iteration of the algorithm there are two steps:

1. Conditional on B*, *, and I*, the distribution of u’f is truncated (J—1)-variate
normal. If the observed choice is j, the truncations are created by the linear restric-

tions u}; — u’fj =0fork=1,...,J. A simple method for drawing from a trun-
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cated multivariate normal distribution described in Geweke (1991) can be applied.
Essentially, this method exploits the fact that conditional on 8%, y*, and the uj for
k # 1, uj; has a truncated univariate normal distribution, from which the
construction of synthetic random variables is trivial.

2. Conditional on uj, (2.2) is a seemingly unrelated regressions model (Zellner 1962),
and the posterior distribution of §* and «* in this model is joint normal with mean
and variance given by familiar generalized least squares expressions (Zellner 1971).
While these expressions may be used directly, they require the inversion of a sym-
metric, positive-definite (m+r) X (m-r) matrix. In the experiments undertaken for
this study the matrix [X}|Z}] of covariates is sparse, with many more zero than
nonzero entries. Techniques described in Geweke, Keane, and Runkle (1994) for
such systems were employed for the computations reported in this paper, greatly

increasing speed and reducing storage requirements.

Beginning from the arbitrary initial values for 8* and *, the Gibbs sampling-data
augmentation algorithm alternates between Steps 1 and 2. At the £th iteration drawings §*®
and v*® are produced. As the number of iterations grows large the sequence {B*(®,*®}
converges in distribution to the posterior distribution. Therefore, the sequence {g(8*,y*“))}
converges in distribution to the posterior distribution of the function g(8*,y*). The assessment
of convergence, and of the numerical accuracy of approximations to posterior moments, is an
important task to which contributions are currently being made (see Geweke 1992, Schervish and
Carlin 1992, and Zellner and Min 1992).

In the first and least restrictive specification Z* must be renormalized in some way. We

accomplish this through the diffuse but proper prior specification,
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I* ~ IW(0.5(;_;+ee"), 1)

while retaining flat, improper priors for 8* and 4* (This approach is similar to McCulloch and
Rossi (1994), except that they also use proper priors for the coefficients.) This modification

leads to a third step in each iteration:

3. Conditional on 8%, *, and the u’;, the distribution of I* is inverted Wishart. An
appropriate drawing may be made by generating the synthetic random variables from
the inverted Wishart distribution as described in Geweke (1988) and then

normalizing £* and the coefficients §* and y*.

Of course, the synthetic random variables in Steps 1 and 2 are then drawn conditional on £*
from Step 3 of the previous iteration, in lieu of the fixed £* = 0.5I + 0.5ee’ used for the first
variance structure. For comparison with the classical results, we record as functions of interest
in each iteration the normalized values 8*()(¢;1%) =12 and y*®(¢;7®)~12 in lieu of B** and
v*®, and the Cholesky decomposition of Z*(o;;®) ™12 rather than Z*.

The other variance structure taken up in the experiments specifies that the variance matrix
Z in the unnormalized model (2.1) is diagonal. This induces the variance structure (3.6), which

is equivalent to the factor model:
GTJ = afi + fl_]’

where o = 0.5!2, the latent variables (f,$;,..., §iy—1) are mutually independent with f; ~
IIDN(,1), {; ~ IIDN(0,4), and A = Diag(é;,...,6;_1). Since this model is identified we may
adopt the conventional diffuse priors w5, (8) o 874, Tgx(8*) o constant, and w.(y*) o

constant. Thus (2.2) becomes:
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u; — of, = XiB* + Ziv* + &, (5.1).

The functions of interest are f)(g, 1) ~12, 4*(O) (g, 1) =12 and, for comparison with (3.6),

& = 6; — 0.5. The foregoing procedures may still be applied, with modification as follows.

1. Drawings of u’; conditional on B*, y*, f = (f,,...,f,)’, and the variance matrix A are
made as before.
1.5. Following Step 1 and before Step 2, drawings from the distribution of the £ condi-
tional on u’;, B*, v*, o, and A are made from the appropriate distribution,

f; ~ Nea(aZee' +4) " 1(u] —XIB*—Zy®), I — oe(oee’ +A)te'].

2. Conditional on the f;, u’{, and A, (3.1) is a seemingly unrelated regressions model.
The conditional distribution of 8* and +* is therefore joint normal with mean and
variance given by the generalized least squafes formulas.

3. Conditional on f; and uj, the posterior distribution of the g are independent inverted
gamma (Zellner 1971), from which synthetic random variables may be constructed

in trivial fashion as described in Geweke (1986).

All results are reported for m = 10,000 iterations of the Gibbs sampling-data
augmentation algorithm. In every case, iterations began with the starting values 8* = 0,
v* =0, Z* = 0.5ee’ + 0.5I. Experimentation with starting values much further from
population values showed that draws from the posterior distribution converged to the
neighborhood of the population values within 100 iterations. Accordingly, only the first 200
iterations were discarded to reduce sensitivity to initial conditions. The posterior mean of a

function of interest g = E[g(8*,v*,Z*)] is approximated by the corresponding moment from the
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m
sample generated by the algorithm, g, = m~1Y" g(8*®,*® £*®), The posterior variance
i=1

m
is approximated by m~1 Y~ [g(8*"),y*® £+®)) — 5 12, and the posterior standard deviation
=1

is approximated by the square root of this expression.

6. Results of the Experiments

A. Experiment One

In the first experiment, each of the nine models described in Section 2 was estimated
using 10 artificial data sets, whose construction is also described in Section 2. The purpose of

this experiment is to compare four estimators of these nine models:

1. Posterior means using the Gibbs sampling-data augmentation algorithm with m =
10,000 iterations;

2. Method of simulated moments using the GHK probability simulator with M = 30
draws to simulate the choice probabilities and the derivatives needed to form the
optimal weights, and using Gauss-Newton iterations to solve the simulated moment
conditions;

3. Method of simulated moments using the KS probability simulator with M = 100
draws to simulate the choice probabilities and the optimal weights, with both p =
0.10 and p = 0.20, again using Gauss-Newton iterations for solution;

4. Simulated maximum likelihood using the GHK probability simulator with M = 30
draws to simulate the choice probabilities, and using BHHH iterations to maximize

the simulated log-likelihood function.
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We did not employ the frequency simulator for reasons discussed in Section 4.1. In the case
of MSM based on the GHK simulator, the value of M was chosen such that increases in M had
negligible effect on the point estimates. In the cases of MSM based on the KS simulator and
SML based on the GHK simulator, M was chosen to give computation times close to that for
MSM based on GHK. In the case of Gibbs sampling the choice m = 10,000 has become fairly
standard and the resultant accuracy as indicated by the numerical standard errors (computed as
described in Geweke (1992) but not reported here) appears to be quite acceptable.

In tables 1-9 we report the means over the 10 artificial data sets of the point estimates
or posterior means, and also of the asymptotic standard errors (ASE) or posterior standard
deviations (PSD), for all parameters in each model. Note that for the unrestricted I*
specification these parameters include A, and in the diagonal variance models they include the
&;-

Several interesting patterns arise when one compares the performance of different
estimators and when one compares the general performance of the estimators across model
specifications and across different groups of parameters. We will now compare the performance
of each method for each set of parameters in each model, focussing primarily on how the MSEs
for those sets of parameters compare across methods and models.

Table 1 contains results for the unrestricted model, consisting of coefficient specification
(3.1) and variance specification (3.2). For the 'y;f‘l, the MSE for MSM-KS with p = 0.10 or
0.20 and for SML-GHK are all roughly 2.5 to 3 times greater than those for MSM-GHK. The
MSE for Bayesian inference are roughly 10%-20% smaller than those for MSM-GHK, and are
best in 7 of 7 cases. For MSM-GHK there is close agreement between the MSE and the mean

ASE, suggesting that the asymptotic distribution theory provides a good approximation to the



Table 1: Coefficient specification (3.1), Unrestricted £* specification

T

Bayesian MSM-KS T
Inference MSM-GHK SML-GHK - > = .10 Y

6 | DGP 5 MSE_PSD | % MSE ASE 3 _MSE ASE | % MSE ASE 3 MSE ASE
T | 0.000 | 0.041 0.073 0.106 | 0.032 0.143 0.124 | 0.042 0.115 0.084 | 0.021 0.168 0.199 | 0.613 0.107 0.151
35 | 0.000 | -0.001 0.077 0.114 | -0.007 0.102 0.119 | -0.030 0.084 0.097 | 0.000 0.235 0.191 | -0.032 0.158 0.149
33 { 0.000 | 0.000 0.082 0.116 { 0.029 0.121 0.117 | -0.048 0.119 0.101 | -0.071 0.274 0.173 | -0.081 0.165 0.140
3: | 0.000 ] -0.001 0.088 0.110 | -0.007 0.141 0.118 | -0.051 0.099 0.101 { 0.629 0.167 0.172 | -0.016 0.104 0.140
32,1 0.000 | -0.013 0.070 0.119 | -0.006 0.116 0.116 | -0.088 0.124 0.107 | -0.017 0.183 0.165 | -0.059 0.134 0.136
34,1 0.000 ] 0.017 0.147 0112 0.025 0.191 0.117 | -0.044 0.144 0.101 | 0.014 0.165 0.166 | 0.013 0.113 0.136
31, | 0.000 | 0.009 0.020 0.029 | 0.005 0.030 0.029 | 0.003 0.023 0.027 { 0.008 0.032 0.030 | 0.007 0.029 0.028
35, { 0.000 | -0.009 0.037 0.031 | -0.009 0.040 0.029 | -0.014 0.035 0.028 | -0.010 0.028 0.029 | -0.012 0.032 0.027
33, { 0.000 | -0.013 0.034 0.030 { -0.011 0.031 0.029 | -0.012 0.035 0.028 | -0.003 0.027 0.028 | -0.008 0.030 0.027
35 | 0.000 | 0.005 0.042 0.030 | 0.005 0.041 0.029 | 0.003 0.043 0.028 | 0.010 0.040 0.029 | 0.006 0.042 0.028
3¢, | 0.000 | 0.006 0.026 0.030 | 0.006 0.026 0.029 | 0.006 0.026 0.029 | 0.004 0.036. 0.029 | 0.006 0.032 0.027
| 33 | 0.000 | 0.000 0.0286 0.030 | 0.001 0.028 0.029 | 0.006 0.028 0.029 | 0.012 0.032 0.029 | 0.009 0.029 0.027
7. | 0.707 | 0.701 0.052 0.055 | 0.711 0.074 0.060 | 0.657 0.232 0.045 | 0.633 0.242 0.086 | 0.693 0.242 0.065
v, | 0.707 | 0.706 0.046 0.077 | 0.718 0.058 0.083 | 0.682 0.234, 0.069 | 0.629 0.264 0.121 | 0.701 0.255 0.094
w1 0.707 | 0714 0.069 0.080 | 0.716 0.083 0.082 | 0.693 0.241 0.071 | 0.668 0.270 0.112 | 0.728 0.264 0.089
v+ | 0707 | 0718 0.072 0.077 | 0.729 0.102 0.082 { 0.705 0.243 0.071 | 0.624 0.252 O0.114 [ 0.703 0.254 0.091
+ | 0707 | 0.724 0.064 0.082 | 0.728 0.079 0.081 [ 0.726 0.250 0.075 | 0.648 0.255 0.110 | 0.726 0.264 0.088
v, | 0.707 | 0.704 0.085 0.077 | 0.706 0.111 0.082 | 0.699 0.245 0.071 | 0.635 0.264 0.109 | 0.687 0.252 0.088
¥f; | -0.707 | -0.719  0.056 0.054 | -0.726 0.078 0.060 | -0.678 0.234 0.045 | -0.632 0.236  0.083 | -0.692 0.241 0.063
a3, | 0.500 | 0.517 0.100 0.112 | 0.507 0.134 0.128 | 0.440 0.189 0.082 | 0.435 0.280 0.186 | 0.401 0.254 0.152
a3, | 0.866 | 0.906 0.084 0.106 | 0.829 0.266 0.111 | 0.846 0.292 0.089 | 0.776 0.308 0.157 | 0.836 0.314 0.137
a3, | 0.300 { 0.515 0.101 0.109 | 0.527 0.130 0.123 | 0.488 0.207 0.083 | 0.443 0.297 0.187 | 0.444 0.243 0.151
a3, | 0.289 | 0.355 0.099 0.108 | 0.342 0.110 0.120 | 0.279 0.120 0.079 | 0.196 0.284 0.176 | 0.285 0.197 0.140
el | 0.816 | 0.818 0.094 0.100 { 0.821 0.122 0.104 | 0.796 0.284 0.088 | 0.684 0.344 0.141 | 0.748 0.309 0.127
al, | 0.500 | 0.513 0.094 0.106 | 0.495 0.125 0.121 { 0.441 0.175 0.085 | 0.429 0.258 0.188 | 0.427 0.257 0.150
al, | 0.289 | 0.277 0.104 0.107 | 0.312 0.153 0.121 | 0.267 0.113 0.078 | 0.330 0.207 0.181 | 0.318 0.210 0.145
aly | 0.204 | 0.187 0.108 0.105 | 0.149 0.114 0.124 | 0.149 0.105 0.078 | 0.085 0.255 0.171 | 0.079 0.203 0.137
aj, | 0.791 | 0.793 0.086 0.093 | 0.805 0.116 0.102 | 0.796 0.274 0.087 | 0.630 0.281 0.140 | 0.689 0.265 0.127
a3; | 0.500 | 0.563 0.108 0.113 | 0.556 0.126 0.120 | 0.507 0.189 0.087 | 0.497 0266 0.200 ] 0.525 0.245 0.152
al, | 0.289 | 0.286 0.089 0.110 | 0.264 0.087 0.119 | 0.240 0.121 0.083 | 0.248 ©0.144 0.191 | 0.273 0.149 0.145
als | 0.204 | 0.201 0.103 0.111 | 0.225 0.098 0.112 | 0.188 0.102 0.081 | 0.169 0.170 0.168 | 0.170 0.125 0.133
aly | 0.158 | 0.139 0.107 0.108 | 0.128 0.098 0.108 { 0.146 0.081 0.077 | 0.187 0.163 0.156 | 0.137 0.153 0.127
als | 0.775 | 0.764 0.082 0.097 | 0.782 0.087 0.098 | 0.802 0.28¢ 0.091 | 0.627 0.317 0.136 [ 0.702 0.283 0.123
ag, | 0.500 | 0.503 0.102 0.107 | 0.503 0.184¢ 0.121 | 0.485 0.197 0.087 | 0.530 0.262 0.191 | 0.488 0.226 0.152
al, | 0.289 | 0.294 0.109 0.109 | 0.305 0.147 0.120 | 0.267 0.120 0.081 | 0.300 0.238 0.171 | 0.275 0.195 0.142
af2 | 0.204 | 0231 0.129 0.103 | 0.242 0.151 0.112 | 0.232 0.130 0.078 | 0.146 0.176 0.166 | 0.150 0.177 0.134
ad, | 0.138 | 0.152 0.086 0.106 | 0.132 0.103 0.108 | 0.158 0.108 0.076 | 0.102 0.167 0.167 | 0.119 0.148 0.129
el | 0.129 | 0.160 0.131 ©0.100 | 0.143 0.155 0.103 | 0.178 0.124 0.074 | 0.112 0.186 0.148 | 0.103 0.148 0.124
ade | 0.764 | 0.711 0.135 0.090 | 0.719 0.157 0.098 | 0.741 0.265 0084 | 0.584 0.296 0.136 | 0.623 0275 0.123

Note: 8 = parameter, DGP = data generating value, 8 = average parameter estimate,

MSE = root mean square error, PSD = average posterior standard deviation,

ASE = average asymptotic standard error.
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small sample distribution of the MSM estimates. For Bayesian inference there is also close
agreement between the MSE and the mean PSD. However, for MSM-KS and SML-GHK the
mean ASE greatly underestimate the MSE, suggesting that these methods produce standard
errors for the 7}1 estimates that are biased downward by factors of 2.5 to 3.

For the 3;2 the MSE are similar across all 5 methods. MSM-KS (p = 0.10) is best in
3 of 6 cases, SML-GHK is best in 1 of 6, and MSM-GHK, SML-GHK and Bayesian inference
are tied for best in 2 of 6. For the B}‘l the MSE for MSM-KS (p = 0.10) are generally the
largest. There is considerable improvement in going to MSM-KS (o = 0.20), which produces
MSE roughly comparable to those for MSM-GHK. The MSE for Bayesian Inference are lowest
in 5 of 6 cases, and the MSE for SML-GHK are generally second best.

For the a;; the MSE for MSM-KS (p = 0.10) are generally about 2 times greater than
those for MSM-GHK. Those for MSM-KS (p = 0.20) are somewhat better but are still
generally much larger than for MSM-GHK. 1;‘01' SML-GHK, the MSE for the diagonal elements
a; are generally about 2 times larger than those for MSM-GHK. The MSE for Bayesian
Inference are generally about 20% smaller than those for MSM-GHK, and are smallest in 15 of
20 cases.

We see in table 1 that the ranking of methods in terms of MSE depends on the type of
parameter considered, but the most striking feature of the results is the poor performance of
MSM-KS and SML-GHK for the -y}'l parameters. Overall, the performance of MSM-GHK and
Bayesian inference appear to dominate, with Bayesian inference getting the slight edge
(especially in terms of MSE for the v;; and 8}, parameters).

Despite the appearance of certain problems for specific methods for specific parameters,

we find the overall precision of the estimates and posterior means in table 1 somewhat
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surprising, given that the unrestricted model contains 20 covariance matrix parameters and that
such parameters are notoriously difficult to estimate in discrete choice models (see Keane 1992).
This difficulty arises due to the loss of information involved in only observing discrete outcomes
rather than the underlying continuous latent variables that determine outcomes.

In table 2 we impose the restriction that the y}’l are equal for all j. This is a restriction
that one would often impose in practice. For example, the z; may be prices, and the restriction
may correspond to imposing homogeneity of degree zero on demand. The ranking of methods
in terms of MSE for 'y’fl is (1) Bayesian inference at 0.043, (2) SML-GHK at 0.057, (3) MSM-
GHK at 0.064, (4) MSM-KS (p = 0.10) at 0.075, and (5) MSM-KS (o = 0.20) at 0.091. The
improvement of these MSEs from those in table 1 is dramatic. The MSEs for v;; are often 2
to 3 times smaller than those for the individual 'yj;l in table 1.

For the B’;Z the drop in MSEs is slight, and the MSE are rather similar across methods.
MSM-GHK is best or tied for best in 3 of 6 cases, followed by SML-GHK and MSM-KS (p =
0.10) at 2 of 6 and Bayesian Inference at 1 of 6.

For the 8}, the drop in MSEs that results from imposing equality of the v;1 is dramatic.
For Bayesian inference the drops range from 10% to 75%. For SML-GHK they fall by roughly
a factor of 2, and for MSM-GHK and MSM-KS they fall by factors of 2 to 3. The MSE for
MSM-KS (p = 0.10) are worst in 6 of 6 cases. Those for MSM-KS (o = 0.20) are 10% to
20% smaller, but are in all cases 2nd worst. The MSE for Bayesian inference are best or tied
for best in 5 of 6 cases, but are generally less than 10% smaller than those for MSM-GHK and
SML-GHK.

For the a;; the drops in MSEs are also often dramatic. For MSM-KS the MSE generally

fall by factors of 1.5 to 3, the improvement for Bayesian inference is generally about 10%, and
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that for MSM-GHK is generally about 10% to 30%. For SML-GHK, the MSE for the diagonal
elements a; improve by roughly a factor of 3, and those for the other elements often improve
by factors of 2. The MSEs for MSM-KS (o = 0.10) are worst in 11 of 20 cases while those
for MSM-KS (p = 0.20) are worst in 9 of 20 cases. The MSEs for the MSM-KS methods are
often about 50% to 100% greater than those for MSM-GHK. The MSE for SML-GHK are best
in 11 of 20 cases, Bayesian inference is best in 8 of 20 cases, and MSM-GHK is best in 1 of
20 cases.

Overall, the method that improves most with the 'y;‘l equality restriction is SML-GHK,
due to the large drop in the MSE for +;; relative to those for the v;1 in table 1, and the large
drops in the MSEs for the a;. In the second table, Bayesian inference again has a slight overall
edge in performance in terms of MSEs, with MSM-GHK and SML-GHK difficult to choose
between: the former tends to have slightly better MSEs for the 8* while the later does better
for the a;. Again, the MSM-KS point estimates clearly have the largest MSEs.

In table 3 we impose the further restriction that the ﬁ;k are zero foralljand k = 1, 2.
This restriction is perhaps harder to justify than that in table 2 in terms of basic theory.
However, it is common in marketing applications to construct models where only brand
attributes determine choices (perhaps with the coefficients on attributes depending on household
characteristics), and where the error structure arises from households heterogeneous preferences
for unobserved brand attributes (see, e.g., Elrod and Keane 1994). Thus, a model without B}‘k
is in fact of independent interest.

With this restriction, the MSE for the ~7, fall by about 20% from those in table 2. The

ranking of methods in terms of MSE for v, is again (1) Bayesian inference at 0.034, (2) SML-



Table 2:

Coefficient specification (3.4), Unrestricted £* specification

[ Bayesian MSM-KS i
Inference MSM-GHK SML-GHK o = 10 s = .20

§ | DGP 3 MSE PSD| 5 MSE ASE 3 MSE ASE| 5 MSE ASE G MSE ASE .
30 | 0.000 0.012 0.051 0.050 0.014 0.054 0.048 0.010 0.051 0.048 0.024 0.080 0.062 0.019 0.063 0.056 ;
33, | 0.000 | -0.019 0.037 0.051 | -0.019 0.043 0.051 | -0.024 0.040 0.051 | -0.003 0.066 0.065 [ -0.017 0.055 0.059 |
43, | 0.000 | -0.007 0.072 0.052 | -0.006 0.068 0.050 | -0.020 0.074 0.051 | -0.011 0.099 0.063 | -0.022 0.086 0.058 :
d¢: | 0.000 { -0.005 0.051 0.051 | -0.003 0.053 0.050 | -0.021 0.059 0.051 { -0.001 0.077 0.062 | -0.008 0.07T1 0.057 l
3¢, | 0.000 | -0.006 0.064 0.051 ; -0.003 0.066 0.050 ; -0.024 0.070 0.051 0.002 0.092 0.061 | -0.010 0.082 0.057 ,
Js, | 0.000 | -0.003 0.048 0.051 0.000 0.048 0.050 | -0.023 0.052 0.051 0.003 0.065 0.062 | -0.001 0.056 0.057
372 | 0.000 0.008 0.031 0.029 | 0.009 0.029 0.029 { 0.008 0.028 0.029 | 0.013 0.036 0.033 | 0.013 0.03¢ 0.031
332 1 0.000 § -0.009 0.033 0.029 | -0.007 0.040 0.029 { -0.008 0.037 0.030 | -0.007 0.035 0.032 | -0.007 0.038 0.030
33, | 0.000 | -0.011 0.033 0.029 | -0.016 0.031 0.029 | -0.011 0.033 0.030 | -0.005 0.027 0.032 | -0.008 0.030 0.030
B8{2 | 0.000 0.005 0.042 0.029 0.005 0.039 0.029 0.005 0.041 0.030 | 0.014 0.041 0.032 0.009 0.043 0.031
Bs, | 0.000 0.006 0.026 0.029 0.006 0.025 0.029 0.008 0.025 0.031 0.004 0.035 0.032 0.008 0.030 0.030
3s, | 0.000 } 0.002 0.026 0.029 | 0.002 0.026 0.029 | 0.002 0.028 0.031 ; 0.010 0.031 0.032 | 0.006 0.029 0.030
¥i) | 0707 | 0.710 0.043 0.042 | 0.7i9 0.064 0047 | 0.738 0.057 0.039 | 0.725 0.075 0.068 | 0.774 0.091 _0.051
a3; | 0.500 0.502 0.127 0.088 | 0.490 0.132 0.105 | 0.497 0.093 0.074 | 0.485 0.144 0.157 ] 0.460 0.202 0.129
3, | 0.866 0.911 0.087 0.084 0.915 0.123 0.0892 0.931 0.103 0.076 0.928 0.139 0.137 0.939 0.140 0.117
a3; | 0.500 0.490 0.090 0.093 0.511 0.084 0.100 0.516 0.093 0.074 0.505 0.139 0.155 0.502 0.164 0.127
asp | 0.289 0.353 0.091 0.096 0.340 0.103 0.117 0.326 0.096 0.084 0.248 0.166 0.189 0.331 0.161 0.151
a3z | 0.816 0.817 0.090 0.071 0.823 0.113 0.078 | 0.858 0.103 0.066 | 0.802 0.125 0.116 | 0.800 0.134 0.099
wqy | 0.500 0.493 0.081 0.088 | 0.477 0.094 0.099 | 0.458 0.088 0.075 | 0.460 0.201 0.158 | 0.442 0.188 0.126
asy | 0.289 0.284 0.088 0.104 0.305 0.151 0.118 0.310 0.081 0.082 0.365 0.197 0.193 0.374 0.205 0.155
agx | 0.204 0.191 0.105 0.101 0.151 0.118 0.112 0.169 0.084 0.081 0.128 0.192 0.183 0.101 0.176 0.147
asy | 0.791 0.786 0.062 0.068 | 0.791 0.078 0.071 | 0.841 0.083 0.063 | 0.761 0.085 0.104 | 0.770 0.073 0.091
e, | 0.500 | 0.538 0.086 0.086 | 0.536 0.076 0.097 | 0.530 0.066 0.076 | 0.538 0.155 0.167 | 0.583 0.162 0.126
ej, | 0.289 | 0.288 0.081 0.104 | 0.265 0.091 0.116 | 0.276 0.063 0.085 | 0.310 0.108 0.201 | 0.307 0.129 0.155
agy | 0.204 | 0.208 0.117 0.103 { 0.226 0.105 0.110 { 0.228 0.085 0.081 | 0.216 0.131 0.181 0.209 0.100 0.143
agy | 0.158 0.141 0.091 0.102 0.134 0.078 0.107 0.159 0.055 0.079 0.162 0.128 0.169 0.149 0.137 0.138
ass ; 0.778 0.752 0.067 0.064 0.770 0.078 0.065 0.819 0.089 0.060 0.735 0.131 0.094 0.743 0.108 0.084
ag, | 0.500 0.487 0.099 0.089 | 0.490 0.111 0.098 | 0.565 0.091 0.078 | 0.554 0.158 0.158 0.534 0.132 0.128
ng> | 0.289 0.295 0.104 0.105 { 0.307 0.150 0.117 | 0.320 0.090 0.08 { 0.358 0.232 0.185 | 0.348 0.198 0.154
gz | 0.204 0.236 0.128 0.101 0.249 0.159 0.110 0.267 0.118 0.082 0.203 0.137 0.180 0.173 0.179 0.145
ags | 0.138 0.142 0.083 0.104 0.142 0.091 0.106 0.176 0.085 0.080 0.092 0.185 0.180 0.133 0.134 0.140
ags | 0.129 0.157 0.129 0.098 0.148 0.151 0.102 0.184 0.107 0.077 0.118 0.162 0.166 0.096 0.158 0.137
agc | 0.764 | 0719 0.082  0.063 | 0.730 0.095 0.061 | 0.797 0.083 0.058 | 0.713 0.106 0.089 | 0.721 0.093 0.079 |

Note: § = parameter, DGP = data generating value, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.
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GHK at 0.043, (3) MSM-GHK at 0.051, (4) MSM-KS (p = 0.10) at 0.064, and (5) MSM-KS
(o = 0.20) at 0.076.

For the a; the MSEs for SML-GHK fall by about 0% to 20%, while those for Bayesian
Inference, MSM-GHK and MSM-KS typically fall by about 0% to 10%. SML-GHK is best in
13 of 20 cases, Bayesian inference is best in 6 of 20, and MSM-GHK is best in 1 of 20. MSM-
KS (p = 0.10) is worst or tied for worst in 12 of 20, while MSM-KS (p = 0.20) is worst or
tied for worst in 9 of 20.

Overall, in table 3, it is diﬁicult to choose a best method. Bayesian inference performs
best for ~7,, while SML-GHK. has a slight edge for the a;. MSM-GHK is clearly third for both
but is not far behind. SML-GHK is the method most helped by the restriction, since in the
second experiment it produced MSEs for the B;k that were larger than those obtained by MSM-
GHK and Bayesian inference. Again, MSM-KS is clearly dominated by other methods.

In table 4 we return to the general model and impose the restriction that the covariance
matrix of the untransformed model is diagonal. This corresponds to a model where the only
unobservables are unique attributes of alternatives for which households have heterogeneous
preferences, and where the alternatives have different levels of the unique attributes.

Comparing the results in table 4 to those in table 1, we see that imposing diagonality on
¥ leads in some cases to dramatic reductions in the MSE for the —y’;l. These fall by factors of
about 1.5 to 2 for MSM-GHK, 2.5 to 5 for SML-GHK, 2 to 3 for MSM-KS (p = 0.20), and
2 to 5 for MSM-KS (p = 0.10). For Bayesian inference, however, the MSE rise more often
than not. The MSE for MSM-GHK are best in 7 of 7 cases, and it is clear that MSM-GHK
dominates along this dimension. The MSE for Bayesian inference and SML-GHK are similar.

Those for MSM-KS are generally about 50% to 300% greater than those for MSM-GHK, but



Table 3: Coefficient specification (3.5), Unrestricted I* specification

Bayesian : MSM-KS
Inference MSM-GHK SML-GHK P, o =20 |
5 | DGP 3 _MSE__PSD 3 MSE ASE | 3 MSE ASE 3 MSE _ASE 5 MSE _ASE
¥+ | 0.707 | 0.703 0.034 0.037 { 0.709 0.051 0.042 | 0.723 0.043 0.034 { 0.717 0.064 0.063 | 0.762  0.076 0.046
a; | 0.500 | 0.500 0.118 0.080 | 0.483 0.121 0.098 170.490 0.091 0.064 | 0474 0.129 0.150 | 0.447 0.197 0.121
a3, | 0.866 | 0.892 0.074 0.078 | 0.900 0.118 0.086 | 0.915 0.094 0.068 { 0.917 0.139 0.134 | 0.919 0.130 0.111
a3, | 0.500 { 0.481 0.076 0.079 | 0.506 0.070 0.094 | 0.509 0.077 0.065 | 0.494 0.120 0.148 { 0.490 0.137 0.119
as, | 0.289 | 0.352 0.088 0.098 | 0.348 0.099 0.117 { 0.340 0.098 0.081 | 0.255 0.157 0.188 | 0.338 0.151 0.150
a3, | 0.816 | 0.805 0.071 0.060 | 0.814 0.099 0.069 | 0.839 0.080 0.055 | 0.783 0.102 0.109 | 0.778 0.113 0.090
ag; | 0.500 | 0.482 0.078 0.076 | 0.471 0.089 0.093 | 0.452 0.076 0.066 | 0.448 0.190 0.149 | 6.433 0.185 0.118
aj, { 0.289 | 0.294 0.094 0.097 | 0.311 0.148 0.117 |{ 0.321 0.082 0.079 | 0.371 0.190 0.191 | 0.376 0.199 0.154
aly | 0.204 | 0.184 0.093 0.095 | 0.150 0.117 0.112 | 0.172 0.086 0.078 | 0.124 0.192 0.182 | 0.106 (0.170 0.146
ajy | 0.791 | 0.780 0.052 0.056 | 0.783 0.066 0.060 { 0.822 0.066 0.050 | 0.751 0.080 0.094 | 0.754 0.093 0.078
ag; | 0.500 | 0.526 0.075 0.076 | 0.531 0.073 0.092 | 8.523 0.066 0.067 | 0.534 0.138 0.158 { 0.571 0.144 0.118
ag, | 0.289 | 0.290 0.084 0.102 | 0.273 0.093 0.116 | 0.289 0.067 0.081 | 0.306 0.107 0.200 | 0.315 0.128 0.154
agx | 0.204 | 0.205 0.106 0.097 | 0.222 0.102 0.110 | 0.227 0.082 0.078 | 0.220 0.130 0.180 | 0.212 0.108 0.142
a, | 0.158 | 0.147 0.095 0.097 | 0.133 0.077 0.107 { 0.163 0.048 0.075 | 0.167 0.134 0.168 | 0.145 0.134 0.137
agy | 0.775 | 0.743 0.047 0.052 | 0.763 0.058 0.053 | 0.796 0.053 0.046 | 0.721 0.126 0.082 | 0.724 0.094 0.069
ag, | 0.500 | 0.478 0.090 0.080 | 0.486 0.103 0.092 | 0.502 0.070 ©0.069 | 0.544 0.126 0.149 | 0.528 0.110 0.119
ag, | 0.289 | 0.310 0.101 0.098 | 0.315 0.151 0.117 | 0.335 0.100 0.083 { 0.359 0.224 0.183 | 0.353 0.187 0.152
agz | 0.204 | 0.235 0.114 0.096 | 0.247 0.150 0.110 { 0.270 0.115 0.079 | 0.205 0.141 0.178 | 0.179 0.169 0.144
al, | 0.158 | 0.144 0.080 0.095 | 0.138 0.091 0.106 | 0.175 0.077 0.077 | 0.094 0.162 0.178 | 0.131 0.143 0.140
ags | 0.129 | 0.162 0.131 0.095 | 0.149 0.148 0.102 { 0.183 0.106 0.074 | 0.119 0.168 0.165 | 0.096 0.161 0.137
age | 0.764 1 0.715 0.069 0.049 | 0.727 0.085 0.049 | 0.773 0.060 0.044 i 0.702 0.088 0.075 | 0.712 0.083 0.063

Note: 8 = parameter, DGP = data generating value, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.



Table 4: Coefficient specification (3.1), Diagonal T* specification

MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.

Bayesian MSM-KS
Inference MSM-GHK SML-GHK s = 10 s = 20 :
g DGP | § _MSE PSD §__MSE ASE | s MSE ASE | 5 MSE ASE & MSE ASE!
! 0.000 | -0.118 0.142 0.096 | -0.021 0.164 0.161 | -0.625 0.133 0.117 | -0.013 0.109 0.293 0.044 0.34T 0.237
33 0.000 | -0.162 0.189 0.115 | -0.015 0.143 0.154 0.074 0.159 0.150 0.097 0.248 0.261 0.158 0.362 0.220 5
35 0.000 { -0.141 0.173 0.108 | -0.010 0.131 0.153 0.122 1 0.222 0.167 | 0.020 0.183 0.243 | 0.099 0.285 0.212
30 0.000 | -0.163 ©0.208 0.113 0.006 0.140 0.123 | -0.005 0.156 0.097 | -0.035 0.177 0.215 | -0.014 0.157 0.166
35, 0.000 | -0.158 0.178 0.107 | -0.032 0.099 ©.120 | -0.070 0.123 0.107 | -0.023 0.181 0.209 -0.037 0.156 0.163
36 0.000 | -0.124 0.219 0.108 | -0.022 0.154 0.119 | -0.101 ©0.177 0.114 | -0.109 0.1%4 0.191 | -0.110 0.176 0.154
312 0.000 0.009 0.030 0.030 0.059 0.169 0.148 0.089 0.151 0.140 0.059 0.260 0.266 0.129 0.355 0.221
334 0.000 | -0.010 0.039 0.031 0.008 0.098 0.146 0.106 0.144 0.147 ] 0.028 0.170 0.236 | 0.071 0.188 0.205
A3 | 0.000 | -0.013 0.033 0.030 | -0.059 0.140 0.144 | 0.083 0.178 0.144 | -0.017 0.164 0.232 | 0.007 0.263 0.201
342 0.000 0.004 0.043 0.031 0.005 0.026 0.029 0.004 0.026 0.030 | 0.009 0.031 0.033 | 0.009 0.030 0.031
3¢y 0.000 0.007 0.026 0.030 | -0.012 0.038 0.029 | -0.011 0.036 0.031 | -0.012 0.027 0.032 | -0.011 0.033 0.030
g2 0.000 0.000 0.029 0.030 | -0.015 0.035 0.029 | -0.017 0.038 0.031 | -0.008 0.026 0.032 | -0.012 0.032 0.030
“vi1 | 0.707 | T0.763 0.070 0.039 | 0.704 0.049 0.048 | 0.725 0.050 0.041 | 0.723 0.049 0075 | 07T 0051 005
3 0.707 { 0.771 0.080 0.082 0.710 0.034 0.076 { 0.750 0.063 0.069 | 0.729 0.127 0.129 | 0.777 0.116 0.098
a1 0.707 0.768 0.083 0.077 0.709 0.058 0.074 0.774 0.092 0.073 0.782 0.122 0.114 0.821 0.131 0.090
Y51 0.707 .78¢ 0.110 0.081 0.722 0.072 0.074 0.788 0.112 0.074 0.764 0.145 0.113 0.805 0.139 0.091
81 0.707 ¢ 0.781 0.089 0.076 | 0.723 0.043 0.074 0.807 0.114 0.077 | 0.761 0.100 0.109 | 0.810 0.127 0.088
Y61 0.707 0.757 0.099 0.078 0.698 0.082 0.074 0.783 0.112 0.074 | 0.749 0.126 0.109 | 0.778 0.113 0.088
v | -0.707 | -0.694 0.040 0.047 | -0.715 0.033 0.047 | -0.737 0.046 0.042 | -0.733 0.046 0.073 | -0.7T6 0.080 0.056
"¢ |70.000|70.281 0.327 0.210 | 0.017 0.061 0.043 | 0.013 0.056 0.044 | 0.001 0.042 0.059 | 0.005 0.040 0.052
& 0.000 0.373 0.420 0.243 0.008 0.078 0.122 | -0.078 0.148 0.123 | -0.039 0.117 0.194 | -0.054 0.128 0.15%
13y 0.000 0.293 0.361 0.218 0.025 0.072 0.042 0.047 0.137 0.054 0.023 0.077 0.054 0.024 0.068 0.049
&8 0.000 0.378 0.465 0.242 0.112 0.218 0.122 0.027 0.273 0.131 0.102 0.314 0.190 0.092 0.247 0.158
& 0.000 0.320 0.387 0.226 | 0.035 0.097 0.042 0.052 0.152 0.055 [ 0.021 0.046 0.053 | 0.024 0.057 0.049
& 0.000 | 0.307 0.519 0.225 | 0.073 0.231 0.016 | 0.095 0.301 0.040 | 0.066 0.208 0.025 | 0.065 0.205 0.022 :
Note: 6 = parameter, DGP = data generating value, § = average parameter estimate,
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are often not much larger than those for Bayesian inference or SML-GHK. MSM-KS (p =
0.10) is worst in 3 of 7 cases and MSM-KS (o = 0.20) is worst in 4 of 7 cases.

For the B’;z the effect of imposing the diagonal ¥ restriction is inconsistent. For MSM-
GHK, as compared to table 1, the MSE rise substantially (50% to 500%) for all the B}’z except
BZZ, for which it falls substantially. SML-GHK and MSM-KS follow similar patterns, but for
Bayesian inference the changes in the MSEs form table 1 are negligible. The MSE for Bé.yesian
inference are best in 4 of 6 cases, while MSM-GHK, SML-GHK and MSM-KS (o = 0.10) are
each best or tied for best in 1 of 6 cases. MSM-KS (o = 0.20) is worst in 3 of 6 cases, and
Bayesian inference, MSM-GHK and SML-GHK are each worst in 1 of 6 cases. Overall,
Bayesian inference has the edge, with MSM-GHK (second best in 3 of 6 cases) second, SML-
GHK third and MSM-KS again generally dominated.

For the B’j“l the change in MSEs from table 1 is again inconsistent. For MSM-GHK the
MSE rise noticeably in 3 of 6 cases and fall noticeably in 2 cases. For SML-GHK the MSE rise
substantially in 5 of 6 cases. For Bayesian inference and MSM-KS (0 = 0.20) the MSE rise
substantially in all 6 cases. For MSM-KS (o = 0.10) the MSE fall substantially in 2 cases and
rise in 2 cases. In terms of MSEs, MSM-GHK is best in 5 of 6 cases and MSM-KS (o = 0.10)
is best in the other. MSM-KS (p = 0.20) is worst in 3 of 6 cases, Bayesian inference is worst
in 2 of 6 cases and MSM-KS (p = 0.10) is worst in the other. Overall, MSM-GHK appears
best, with other methods difficult to rank.

For the &;, MSM-KS (o = 0.20) is best in 3 of 6 cases, MSM-GHK is best in 2 of 6
cases, and MSM-KS (p = 0.10) is best in 1 of 6 cases. SML-GHK generally performs worst
among the classical methods. The Bayesian posterior means for the §; are all upward biased

with posterior standard deviations that are nearly as large as the bias. The numerical standard
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errors (not reported here) were also quite large—as great as one-half the posterior standard
deviation. These results are all consistent with a posterior density that is nearly flat over a wide
range of the £;.

Overall, in table 4, MSM-GHK appears to dominate other methods. It clearly has the
smallest MSE for the vj;, performs best overall for the §};, is dominated for the 8}, by
Bayesian inference but remains better than other methods, and is second best for the §. Again,
MSM-KS is dominated by other methods.

In table 5 we impose both the restrictions that the 'y;l are equal for all j and that ¥ is
diagonal. These restrictions result in some dramatic reductions in MSEs from the unrestricted
model (table 1), the model with only the equal 'y’;l restriction imposed (table 2), and the model
with only the diagonal X restriction imposed (table 4). For example, for MSM-GHK the MSE
for v1; is 3 to 5.5 times smaller than those for the individual 'y’;l in table 1, 1.5 to 4 times
smaller than for the individual v}, in table 4, and 3 times smaller than for 4}, in table 2. For
SML-GHK the MSE is roughly 10 times smaller than those for the individual 7}‘1 in table 1, 2
to 4.5 times smaller than for the individual v;; in table 4, and 2 times smaller than for vy in
table 2. For Bayesian inference the MSE is roughly 30% to 60% smaller than those for the
individual 'y’;l in table 1, 20% to 75% smaller than for the individual 'Y;l in table 4, and 33%
smaller than for vy, in table 2. Similar substantial improvements are also observed for MSM-
KS.

In terms of MSE for v;;, MSM-GHK is best at 0.020, SML-GHK is second at 0.026,
Bayesian inference is third at 0.029, MSM-KS (o = 0.10) is fourth at 0.040, and MSM-KS

(0 = 0.20) is fifth at 0.070.
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For the B;z Bayesian infere;nce is best or tied for best in 4 of 6 cases, and SML-GHK and
MSM-KS (p = 0.10) are each best in 1 of 6 cases. MSM-KS (p = (.10) is worst in 3 of 6
cases, and Bayesian Inference, MSM-GHK and SML-GHK are each worst in 1 of 6 cases.
Overall, Bayesian inference has the edge, with MSM-GHK (second best in 4 of 6 cases) second,
followed by SML-GHK. Again, MSM-KS is generally dominated by other methods.

For the B’j“l Bayesian inference is best or tied for best in 4 of 6 cases. SML-GHK and
MSM-GHK give very similar MSEs. Again, MSM-KS is dominated by other methods.

For the £;, MSM-GHK is best in 5 of 6 cases. SML-GHK and MSM-KS (p = 0.20) give
similar MSEs, and MSM-KS (p = 0.10) gives the largest MSEs among the classical methods.
Bayesian posterior means for the £; again show a substantial upward bias. This bias is smaller
than in table 4, but great enough that Bayesian inference has the highest MSE in all 6 cases.

Overall, MSM-GHK performs best in table 5. It gives the smallest MSE for 73, and
generally has the smallest MSEs for the §;. For the B}‘l and 63‘2 Bayesian inference is best with

'MSM-GHK edging out SML-GHK for second best. Clearly, if one;s primary interest is in the
B}'k, then Bayesian inference dominates other methods.

In table 6 we impose the restrictions that the 7}“1 are equal for all j, that T is diagonal,
and that the B’;k are zero for all j and k = 1, 2. Across all methods, this reduces the MSEs for
v11 by from 20% to 60% from those in table 5. The effect on the MSEs for the §; is mixed for
the classical methods, but Bayesian posterior means improve to the point that they show the
smallest or tied for smallest MSE in 5 out of 6 cases. The MSE for all 7 free parameters are
extremely close for MSM-GHK, SML-GHK and Bayesian Inference. Thus, it is impossible to

chose among these methods. MSM-KS is again dominated by other methods.



Table 5: Coefficient specification (3.4), Diagonal T* specification

MSE = root mean square error, PSD) = average posterior standard deviation,
ASE = average asymptotic standard error.

Bayesian MSM-KS
Inference MSM-GHK SML-GHK o = .10 p = .20
] DGP 3 MSE PSD 3 MSE ASE 5 MSE ASE H MSE ASE H MSE  ASE
37 | 0.000 | -0.011 0.053 0.049 0.012 0.115 0.081 0.007 0.105 0.074 0.027 0.237 0.111 0.021 0.177 0.099
33, | 0.000 | -0.042 0.052 0.050 0.011 0.085 0.079 0.038 0.106 0.082 0.044 0.204 0.104 0.046 0.147 0.096
33, | 0.000 | -0.030 0.079 0.049 0.012 0.120 0.079 0.045 0.127 0.081 0.025 0.220 0.099 0.039 0.180 0.094
3¢, | 0.000 | -0.026 0.059 0.050 0.004 0.053 0.051 0.002 0.054 0.047 0.008 0.085 0.067 0.006 0.070 0.059
3¢, | 0.000 | -0.027 0.073 0.049 | -0.020 0.041 0.051 | -0.028 0.040 0.050 | -0.002 0.067 0.064 { -0.015 0.053 0.058
Jg, | 0.000 | -0.022 0.052 0.048 | -0.019 0.067 0.051 { -0.038 0.079 0.050 | -0.026 0.104 0.063 | -0.035 0.087 0.038
81, | 0.000 0.007 0.030 0.029 0.061 0.131 0.078 0.064 0.115 0.081 0.066 0.218 0.104 0.079 0.188 0.095
8z i 0.000 | -0.009 0.039 0.030 | 0.024 0.071 0.077 | 0.048 0.080 0.079 | 0.027 0.120 0.098 | 0.045 0.115 0.092
33, | 0.000 | -0.012 0.032 0.030 | -0.010 0.071 0.076 { 0.029 0.077 0.078 | -0.002 0.153 0.098 | 0.005 0.125 0.091
3¢, | 0.000 0.004 0.041 0.029 0.006 0.026 0.029 0.003 0.025 0.029 0.009 0.032 0.033 0.008 0.030 0.03]
352 | 0.000 0.005 0.026 0.030 | -0.010 0.037 0.028 | -0.011 0.036 0.030 } -0.012 0.030 0.032 | -0.011 0.034 0.030
362 ] 0.000 0.001 0.027 0.030 | -0.013 0.033 0.029 | -0.016 0.036 0.030 | -0.008 0.026 0.032 | -0.011 0.030 0.030
73, | 0.707 | 0.721 0.029 0.026 | 0.710 0.020 0.027 | 0.722 0.026 0.026 | 0.722 0.040 0.085 | 0.770 0.070 0.028
"¢ [0.000 [ 0.061 0.130 0.085 | 0.001 0.051 0.053 | -0.014 0.055 0.052 | 0.006 0.074 0.068 | -0.004 0.066 0.062 |
13 .000 0.117 0.159 0.093 0.007 0.042 0.035 0.010 0.050 0.036 0.010 0.036 0.040 0.009 0.043 0.038
& 0.000 0.066 0.123 0.087 { -0.005 0.066 0.054 | -0.021 0.071 0.053 0.001 0.099 0.065 | -0.011 0.083 0.061
& | 0.000 0.084 -0.116 0.089 0.015 0.043 0.034 | 0.020 0.057 0.037 0.017 0.065 0.040 0.021 0.061 0.038
& | 0.000 0.061 0.143 0.086 0.008 0.041 0.053 | -0.009 0.046 0.053 | 0.009 0.066 0.066 0.004 0.050 0.061
i_ | 0.000 0.059 0.113 0.086 0.024 0.062 0.035 0.029 0.083 0.038 0.032 0.076 0.040 0.030 0.076 0.038
Note: ¢ = parameter, DGP = data generating value, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.
Table 6: Coefficient specification (3.5), Diagonal £* specification
T Bayesian MSM-KS
Inference MSM-GHK SML-GHK o = .10 1 o= .20
|_6 | DGP 3___MSE_PSD_ 5 MSE _ASE 3 MSE ASE| 53 MSE ASE| g MSE _ASE
] v, | 0.707 0.702 0.015 0.018 0.704 0.012 0.018 | 0.704 0.013 0.017 0.717 0.020 0.022 J 0.759 0.054 0.018
€ | 0.000 0.011 0.064 0.046 0.015 0.074 0.048 | 0.012 0.071 0.046 0.013 0.106 0.058 0.018 0.102 0.083
& | 0.000 0.025 0.054 0.047 [ 0.029 0.066 0.048 { 0.028 0.061 0.047 0.032 0.088 0.058 0.038 0.087 0.053
€3 | 0.000 | -0.004 0.038 0.046 | -0.003 0.038 0.047 | 0.006 0.042 0.046 | -0.005 0.070 0.056 0.000 0.055 0.052
g: | 0.000 0.020 0.051 0.047 | 0.024 0.051 0.048 j 0.028 0.051 0.047 0.024 0.056 0.057 0.032 0.061 0.053
& ] 0.000 | -0.009 0.047 0.045 { -0.008 0.044 0.047 | 0.002 0.047 0.046 | -0.015 0.070 0.055 | -0.005 0.062 0.052
& ] 0.000 0.002 0.052 0.045 0.003 0.054 0.047 | 0.016 0.055 0.047 0.006 0.075 0.056 0.012 0.077 0.052
Note: # = parameter, DGP = data generating value, § = average parameter estimate,
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In tables 7 to 9 we impose the restriction that T is the identity matrix. This restriction
does not lead to particularly interesting models, since the whole point of simulation estimation
is to make estimation feasible without such strong covariance restrictions. Nevertheless, it is
interesting to look at these results to see how attempting to estimate large numbers of covariance
matrix parameters reduces the precision with which regressor coefficients are estimated.

In table 7 only the restriction that X is diagonal is imposed. This restriction produces
some dramatic MSE reductions. For example, as compared to table 1, for MSM-GHK this
reduces the MSE for the 'ijkl by factors of 2 to 4.5. As compared to table 4, where only a
diagonal ¥ restriction is imposed, the MSE reductions range from less than 10% to factors of
3.5. For the 8}, the MSE reductions from table 1 are only about 5% to 10%, but for the §;;
the MSE reductions are from 60% to 80%.

In table 7 the MSE for all 18 free parameters are so close across MSM-GHK, SML—GHK
and Bayesian inference so as to make it impossible to choose among these methods. MSM-KS
is again dominated in terms of MSEs for all parameters. However, MSM-KS (o = 0. 10) clearly
dominates MSM-KS (p = 0.20), and for the 'y;l its degree of inferiority is not nearly so great
as in previous experiments.

In table 8 we impose the restrictions that the 73‘1 are equal for all j and that ¥ is the
identity matrix. In some cases this leads to dramatic MSE reductions. For example, for MSM-
GHK the MSE for 77, is roughly 5 to 10 times smaller than those for the individual 'Y;:l in
table 1. Itis 6 times smaller than that for +7, in table 2, but not quite 2 times smaller than that
for 7’{1 in table 5, where X is only restricted to be diagonal. Thus, comparing tables 2, 5, and
8, we see that most of the reduction in MSE for +;, is achieved by imposing diagonality on £

rather than going all the way to an identity matrix restriction. For the B}‘l, the MSEs for MSM-



Table 7: Coefficient specification (3.1), Scalar £* specification

Bayesian MSM-KS ;

Inference MSM-GHK SML-GHK PST, 2 = .20 =1
8 | _DGP | i MSE PSD | 3 MSE ASE|_ 3 MSE ASE | 3 MSE_ ASE 3___MSE _ASE
35 0.000 0.010 0.050 0.036 0.009 0.049 0.036 | 0.008 0.047 0.035 [ 0.006 0.053 0.040 | 0.008 0.053 0.036
335 0.000 0.017 0.041 0.035 0.017 0.041 0.036 | 0.013 0.040 0.035 | 0.021 0.045 0.041 0.021 0.046 0.036
35 0.000 | -0.002 0.028 0.035 | -0.003 0.026 0.036 | -0.004 0.025 0.035 | -0.014 ©.035 0.039 | -0.010 0.032 0.035
85, 0.000 0.014 0.036 0.035 0.015 0.035 0.036 0.010 0.031 0.035 0.015 0.030 0.041 0.015 0.033 0.036
Bs1 0.000 | -0.008 0.032 0.036 | -0.008 0.031 0.035 | -0.013 0.033 0.036 | -0.016 0.043 0.039 | -0.011 0.038 0.035
Be: 6.000 0.005 0.041 0.035 | 0.004 0.040 0.036 | 0.001 0.039 0.035| 0.000 0.044 0.039 | 0.005 0.047 0.036
A1a 0.000 0.009 0.029 0.029 0.007 0.028 0.029 { 0.006 0.027 0.029 | 0.011 0.034 0.033 | 0.011 0.033 0.031
832 0.000 | -0.008 0.037 0.029 { -0.008 0.039 0.029 | -0.008 0.037 0.029 | -0.009 0.033 0.032 | -0.007 0.037 0.030
832 0.000 | -0.010 0.030 0.029 | -0.010 0.030 0.029 | -0.011 0.030 0.02% | -0.008 0.024 0.032 | -0.009 0.027 0.030
.2 0.000 0.004 0.040 0.029 | 0.003 0.039 0.029 { 0.002 0.038 0.029 | 0.011 0.037 0.032 ] 0.006 0.040 0.03]
352 0.000 0.006 0.025 0.029 0.006 0.024 0.029 0.006 0.023 0.029 0.001 0.031 0.032 0.005 0.028 0.030
362 0.000 0.002 0.026 0.029 0.003 0.026  0.029 | 0.001 0.027 0.029 | 0.008 0.027 0.032 | 0.005 0.027 0.030
71 | 0.707 [70.707 0.027 0.027 | 0.707 0.027 0.028 | 0.701 0.027 0.027 | 0.722 0.032 0.031 | 0.762 0.063 0.037
21 0.707 | 0.689 0.027 0.027 | 0.688 0.028 0.028 | 0.684 0.030 0.027 | 0.698 0.025 0.032 | 0.739 0.039 0.028
31 0.707 0.707 0.032 0.027 0.707 0.031 0.027 0.704 0.032 0.027 | 0.727 0.037 0.029 0.763 0.065 0.027
Ta1 0.707 0.700 0.022 0.027 0.701 0.022 0.028 0.697 0.023 0.027 0.711 0.029 0.032 0.751 0.050 0.028
Y81 0.707 0.714 0.028 0.028 | 0.715 0.028 0.027 ] 0.712 0.028 0.027 | 0.731 0.044 0.030 | 0.768 0.068 0.027
Y51 0.707 | 0.703 0.024 0.027 | 0.703 0.024 0.027 | 0.699 0.026 0.027 | 0.720 0.039 0.029 | 0.756 0.057 0.027
7 | -0.707 | -0.710 - .0.032 0.027 | -0.709 0.031 0.027 | -0.702 0.030 0.027 | -0.716  0.034¢ 0.031 | -0.760 0.062 0.027

Note: 8 = parameter, DGP = data generating value, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.
Table 8: Coefficient specification (3.4), Scalar &* specification
Bayesian MSM-KS
Inference MSM-GHK SML-GHK 5 =.10 p = .20

| 6 | DGP 3__MSE__PsSD 3 MSE ASE| 5 MSE _ASE @ MSE ASE| 5 MSE ASE |
41, | 0.000 0.009 0.036 0.029 0.008 0.035 0.029 | 0.007 0.033 0.029 | 0.009 0.039 0.032 | 0.009 0.040 0.030
83, | 0.000 0.006 0.023 0.029 0.006 0.024 0.029 0.003 0.02¢ 0.028 0.012 0.028 0.032 0.609 0.027 0.031
331 | 0.000 | -0.004 0.034 0.029 { -0.003 0.033 0.029 { -0.004 0.032 0.029 | -0.010 0.032 0.032 | -0.008 0.034 0.030
s | 0.000 0.009 0.035 0.029 0.010 0.034 0.029 | 0.007 0.033 0.028{ 0011 0.031 0.032 | 0.011 0.034 0.031
B¢ | 0.000 | -0.006 0.026 0.029 | -0.005 0.024 0.029 | -0.008 0.026 0.029 | -0.009 0.028 0.032 | -0.006 0.028 0.030
8¢; | 0.000 | 0.001 0.029 0.029 | 0.001 0.028 0.029 | -0.001 0.026 0.029 { 0.002 0.030 0.032 | 0.003 0.032 0.030
31, | 6.000 0.008 0.029 0.029 0.008 0.029 0.028 | 0.006 0.027 0.029 { 0.011 0.03¢ 0.033 { 0.011 0.033 0.031
B2, | 0.000 | -0.008 0.038 0.029 | -0.067 0.039 0.029 | -0.008 0.037 0.029 | -0.008 0.034 0.032 | -0.007 0.038 0.030
32 | 0.000 .0.010 0.031 0.029 | -0.009 0.030 0.029 { -0.011 0.031 0.029 | -0.008 0.025 0.032 | -0.009 0.028 ©0.030
8, 1 0.000 | 0.003 0.040 0.029 | 0.003 0.039 0.029 | 0.002 0.038 0.029 | 0.011 0.037 0.032 | 0.006 0.040 0.031
B, | 0.000 | 0.006 0.025 0.029 | 0.006 0.024 0.029 | 0.005 0.023 0.029 | 0.001 0.031 0.032 | 0.005 0.028 0.030

Béz | 0.000 0.002 0.026 0.029 0.003 0.026 0.029 | 0.001 0.027 0.029 { 0.007 0.027 0.032 1 _0.005 0.027 0.030 ]

55 170.707 0.703 0.011 0.011 0.703 0.011 0.012 0.699 0.013 0.011 0.717 0.017 0.013 | 0.756 0.051 0.011 ]

Note: 9 = parameter, DGP = data generating value, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.




Table 9: Coefficient specification (3.5), Scaia.r T* specification

Bayesian MSM-KS

Inference MSM-GHK SML-GHK » =.10 o = .20
8 | DGP 3 _MSE__PSD 5 MSE _ASE 3 __MSE ASE 4 _MSE ASE 3 __MSE ASE
v | 0.707 { 0702 0.012 0.011 | 0.703 0.011 0.012 | 0.699 0.013 0.011 | 0.716 0.016 0.013 | 0.755 0.050 0.011

Note: 8 = parameter, DGP = data generating valne, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.
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GHK in table 8 are on the order of 2 times smaller than those in table 2, but the MSE for the
3’;2 are almost identical.

In table 8 the MSE for all 13 parameters are almost identical for MSM-GHK, SML-
GHK, and Bayesian inference. MSM-KS (p = 0.10) also produces very similar MSEs for the
B}'k, but its MSE for v;; is roughly 50% larger. MSM-KS (o = 0.20) also produces very
similar MSEs for the 8]y, but it is clearly inferior to other methods for ~y;.

In table 9 we impose the 3 restrictions that the 'Yj;l are equal for all j, that X is the
identity matrix, and that the 8, are zero for all j and k = 1, 2. Thus vy is the only free
parameter. MSM-GHK, SML-GHK and SML-GHK produce very similar results (with a slight
edge to MSM-GHK) and MSM-KS is dominated by other methods.

Throughout tables 1-9 a number of very clear patterns emerge. One is that the diagonal
¥ specification leads to important gains in efficiency. For example, comparing tables 2, 5, and
8 we see that the MSE for v;; estimated by MSM-GHK falls from 0.064 to 0.020 with the
diagonal ¥ restriction imposed, and then falls to 0.011 when the further restriction that ¥ is the
identity matrix is imposed. Thus, most of the gain that can be achieved by restricting I is
already achieved by restricting it to be diagonal rather than going all the way to a ¥ =1
restriction. This fact is important, because in many choice applications in areas like marketing
and transportation it is a truism among practitioners that the most important deviations from ITA
are due to unequal error variances.

Another important pattern is that the MSE for the B}‘z do not fall appreciably when
restrictions are placed on the model. For example, comparing tables 2 and 8, we see that for
MSM-GHK the MSE for the B}"z are identical to 3 decimal places in 3 of 6 cases, and differ by

less than 4% in the other 3 cases. Meanwhile, the MSE for the B}‘l fall by factors of roughly
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2 and the MSE for v, falls by a factor of 6. Comparing tables 1 and 8, we see that the MSE
for the B}‘z fall by at most 8%, while the MSE for the ,8}‘1 fall by factors of roughly 4 to 7. The
intuitive reason for this pattern is that the B’j*z are identified from household differences in choice
probabilities that arise due to differences in the x}, while the parameters 8};, 1, and a; are all
identified primarily from differences in aggregate choice probabilities for alternatives with
different attributes. Thus, it is difficult to disentangle differences among the B}‘l, 'y’;l, and a;

because different patterns for these parameters can generate roughly equivalent aggregate choice

probabilities conditional on the z’;j. Thus restrictions on the B;p 'y}‘l, and a;; can be expected
to lead to substantial MSE reductions among the 8], v;;, and a;; parameters, but not for the §},.
(Of course, it is simple to show that so long as x; varies across i, it is impossible to chose
*

alternative values for 8 ;

1 3;2, 'Y;p and ay that will generate identical choice probabilities for
all i. However, the fact that it is possible to chose alternative values for the model parameters
that generate nearly identical choice probabilities is exactly the “fragile identification problem”
in the multinomial probit model described by Keane 1992.)

Another pattern is that means of the point estimates and posterior means tend to be close
to each other, relative to their distance from the data generating values: when the mean point
estimate or mean of the posterior mean across replications is greater than the data generating
value for one method, it tends to be greater for all methods. This feature is present for all
models and groups of parameters, but is more prevalent for the coefficients than for the variance
parameters, and is most striking in the models with smaller numbers of parameters.

In terms of an overall ranking of methods, it is clear that this differs across models. In

the unrestricted model of table 1, Bayesian inference has a slight edge over MSM-GHK because

it produces slightly lower MSEs for the B}‘l and 'y}‘l. SML-GHK performs worse because it has
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high MSEs for the 73-"1 and the diagonal elements of the a;, and also because it generates mean
ASE that severely understate the MSE. However, as soon as we impose an equality restriction
on the -y}‘l in table 2, the advantage of MSM-GHK over SML-GHK disappears, while Bayesian
inference appears to have a slight edge in terms of MSE. Performance of all three methods is
very similar in table 3, where an equality restriction is also imposed on the B}‘k. In tables 4 and
5, where a diagonal structure is imposed on I (and where 'y;l are unrestricted or forced to be
equal, respectively), MSM-GHK dominates other methods. In tables 6 through 9, which are
highly restricted models, the MSE for Bayesian inference, MSM-GHK and SML-GHK are
essentially indistinguishable.

A clear pattern however, is that MSM-KS is dominated by other methods in all models.
The MSEs for this method are consistently greater than for other methods, both when p = 0.10
and p = 0.20. For p = 0.20 asymptotic standard errors are smaller than for p = (.10, which
is characteristic of kernel smoothers but introduces an important downward bias in test size.
MSM-KS also suffers form several other disadvantages. Most important, it requires care in
choice of a tuning parameter while the other methods do not. In experiments not reported here
in tabular form, we found that convergence required p = 0.05, and for values of p above 0.20
bias increased very quickly. Systematic evidence of the increased bias that results from
increasing p from 0.1 to 0.2 can be seen in tables 1-9.

Finally, we attempted to repeat the experiment using only the first 1,000 observations of
the artificial data set. For all of the methods, computational problems emerged for some of the
models. As one would expect, problems were concentrated in the models with more free
parameters. The most common problems were estimated singularity of the Hessian in the

classical methods, and estimated singularity of the variance matrix Z* for the Bayesian method.
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But across the nine models, computations were carried to completion successfully more often
than not. The difficulties involved in obtaining estimates of the larger models using only 1,000
observations are attributable to the relative lack of information contained in discrete choice data

that we referred to earlier.

B. Experiment Two

In the second experiment only the model with the 7;1 restricted to be equal was
estimated. This model was estimated using 50 artificial data sets constructed to have properties
similar to the Nielsen data on household ketchup purchases. The construction of this data is

described in Section 2. In this experiment we compare three estimators of this model:

1. Posterior means using the Gibbs sampling-data .augmentation algorithm with m =
10,000 iterations.

2. Method of simulated moments using the GHK probability simulator with M = 30
draws to simulate the choice probabilities and the derivatives that enter the optimal
weights, and using Gauss-Newton iterations to solve the simulated moment condi-
tions.

3. Simulated maximum likelihood using the GHK probability simulator with M = 30
draws to simulate the choice probabilities, and using BHHH iterations to maximize

the simulated log-likelihood function.

We do not consider MSM-KS because it is already clear from experiment 1 that it is
dominated by other methods. There are two reasons why we only consider the model with an
equality restriction imposed on the 7}'1 in this experiment. First, we would like to do one

Monte-Carlo experiment that is more thorough by using 50 artificial data sets rather than only
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10. However, it is not computationally for us to do this many replications on all 9 models.
Since, for reasons described earlier, the model with the equality restriction imposed on the 7;1
is the most realistic model, its seems natural to choose that one. Second, given that the data are
less behaved here than in experiment 1, we do not feel it is feasible to estimate the unrestricted
model using only 5,000 observations, as severe problems would probably arise in identifying the
covariance matrix parameters.

The results of the second experiment are reported in table 10. In terms of MSE, the
results for 711 are very similar across the three methods. For the 82, Bayesian inference
produces MSEs that are usually about 10% to 30% smaller than the classical methods, and it is
best or tied for best in 5 of 6 cases. The MSE for MSM-GHK and SML-GHK are very similar.
For the B}‘l, Bayesian inference produces MSEs that are often 10% to 50% smaller than the
classical methods, and again it is best or tied for best in 5 of 6 cases. Again, MSM-GHK and
SML-GHK produce very similar MSEs. For the a; it is not nearly so obvious how to rank the
estimators. Bayesian Inference is best in terms of MSE in 10 of 20 cases, while MSM-GHK
is best in 6 of 20 and SML-GHK is best in 4 of 20. Although these figures might appear to give
Bayesian Inference a slight edge, it is again true that the MSE for the classical methods are very
close, so that in all 10 cases where Bayesian inference is not best it is in fact the worst of the
three methods.

One obvious feature of the results in table 10 is that the MSE for all parameters except
the B}‘z are generally much larger than that for the corresponding parameter in table 2. This
illustrates how the information in the sample that is useful for identifying the parameters ;1,
'y}'l and a; declines when the z’fj are not 1ID. On the other hand, there is no general tendency

for the MSE for the ,33-"2 to be larger or smaller in table 10 than in table 2.



Table 10: Coefficient specification (3.2), Unrestricted £* specification

T Bayesian
Inference MSM-GHK SML-GHK

§ | DGP| 3 MSE_PSD| § MSE ASE| 3 MSE ASE
%, | -0.307 | -0.315 0.091 0.102 | -0.318 0.106 0.111 | -0.319 0.110 0.091
3, | -0.961 | -0.995 0.186 0.189 | -1.066 0.225 0.213 | -1.071 0.228 0.182
B3, | 0.163 | 0.041 0.214 0.173 | -0.027 0.282 0.219 | -0.034 0.289 0.183
21 | -0.946 | -1.042 0.535 0.381 { -1.593 1.042 0.818 | -1.591 1.044 0.591
B3y | 1402 1.101 0.423 0.237 | 1.230. 0.307 0.298 | 1.226 0.308 0.240
B, | 0.954 | 0.921 0.102 0.105| 0.891 0.116 0.108 | 0.888 0.118 0.097
Bi, | -0.033 | -0.031 0.016 0.018 | -0.029 0.018 0.021 | -0.029 0.018 0.018
B3, | -0.011 | -0.019 0.029 0.028 | -0.009 0.032 0.033 | -0.010 0.032 0.028
52 | -0.040 | -0.034 0.028 0.029 | -0.019 0.036 0.034 | -0.019 0.035 0.028
. | -0.035 | -0.035 0.046 0.043 | 0.001 0.069 0.073 | 0.000 0.068 0.047
B3, | -0.359 | -0.430 0.116 0.077 | -0.397 0.098 0.099 { -0.398 0.097 0.088
| B2, | -0.171 ] -0.171  0.022 0.026 | -0.170  0.022 0.027 | -0.171 0.022 0.025
[ y* [-198T[-1988 0.121 0.120 | -1.991 0.122_ 0.125 | -1.997 0.122_0.118
ay, | 1.000 [ 1.000 0.000 0.000 | 1.000 0.000 0.000 | 1.000 0.000 0.000
a3, | 0.615| 0.569 0.210 0.189 | 0.557 0.221 0.196 | 0.541 0.214 0.143
a3, | 1.019 | 1.061 0.139 0.129| 1.031 0.127 0.129| 1.032 0.125 0.115
a3; | 0.410 | 0.386 0.275 0.243 | 0.448 0.205 0.265 | 0.457 0.195 0.147
aj; | 0.443 | 0.358 0.358 0.325| 0.346 0.255 0.401| 0.339 0.256 0.163
a33 | 1.407 | 1.347 0.213 0.171| 1.305 0.185 0.184| 1.2909 0.189 0.150
aj, | 0.322| 0.366 0.435 0.384 | 0.514 0.451 0.654 | 0.530 0.453 0.244
aj, | 0.401| 0.380 0.391 0.429| 0.339 0.424 1.061| 0.324 0.420 0.254
aj; | 1.483 | 1.275 0.458 0.347 | 0.906 0.672 0.808 | 0.849 0.729 0.268
aje | 1.096 | 0.991 0.216 0.249 | 1.460 0.550 0.477 | 1.457 0.551 0.313
a3, | 0.351 | 0.290 0.273 0.291 | 0.285 0.237 0.333 | 0.293 0.229 0.190
a3, | 0.024 | 0.027 0.430 0.370| 0.104 0.328 0.655| 0.107 0.337 0.200
al; | 0.497 | 0.253 0.471 0.357 | 0.255 0.399 0.623 | 0.238 0.406 0.202
al | 0.238 | 0.189 0.312 0.362 | 0.103 0.277 1.461| 0.082 0.286 0.187
a%s | 0.905 | 0.859 0.208 0234 | 1.003 0.283 0.428 | 1.004 0.284 0.249
a5, | 0.508 | 0.514 0.147 0.165| 0.524 0.154 0.162 | 0.510 0.166 0.113
a5, | 0.641 | 0.603 0.231 0.223 | 0.407 0.333 0.245 | 0.368 0.363 0.137
ags | 0.986 | 0.970 0.143 0.170 | 0.760 0.251 0.185 | 0.726 0.282 0.130
ag, | 0861} 0.387 0.184 0.216 ] 0.223 0.221 0.376| 0.197 0.235 0.126
ags | -0.100 | 0.036 0.256 0.250 | 0.059 0.200 0.584 | 0.053 0.194 0.121
ags | 0.8485°] 0.618 0.240 0.142 | 1.025 0.217 0.146 | 1.062 0.247 0.101

Note: 8 = parameter, DGP = data generating value, § = average parameter estimate,
MSE = root mean square error, PSD = average posterior standard deviation,
ASE = average asymptotic standard error.
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Another obvious feature of table 10 is that large biases are apparent for several of the
parameters. Examples of parameters for which highly significant biases appear for one or more
of the methods (in the sense that the estimated bias exceeds the empirical standard deviation of
the bias by several standard deviations) are B35, 831, B51, Be1> 243> 2445 353, 263, 26s» 2nd ags.
Such substantial biases as appear for these parameters were not apparent for methods other than
MSM-KS in table 2. It is also important to note that, when one method shows substantial bias
for a particular parameter, in most cases the other methods tend to be biased in the same
direction. This evidence indicates that the sample size of 5,000 is not adequate to eliminate
small sample bias given the configuration of regressors and parameter values in the second
experiment. The fact that a sample size of 5,000 did appear sufficient to render negligible any
small sample bias in the first experiment is likely due to the IID property of the regressors in
that experiment.

The agreément between empirical MSEs and the means of the asymptotic standard errors
or posterior standard deviations is not so close as in the first experiment. For SML-GHXK the
mean ASE is less than the empirical MSE for 32 of 33 parameters, and the differences are often
large. For MSM-GHK the relation between the MSE and ASE depends on the set of parameters
considered. For the 8];, B, and v;, there is generally close agreement between MSEs and
mean ASEs, and there is no systematic tendency for one to be greater than the other. But for
the a;;, the mean ASE overstates the MSE in 13 of 20 cases. More importantly, the degree by
which the ASE exceed the MSE is often very substantial. For Bayesian inference, the mean
posterior standard deviation lies substantially below the MSE for a few of the B}:k, particularly
for 841, B5;, and B5,. But for the remaining B}‘k, and also for 77, there is generally close

agreement between MSEs and mean PSDs. For the a;, the agreement between the MSEs and



34

the mean PSDs is better than for the classical methods, and there is no systematic tendency for
one to lie above the other (i.e., the mean PSD is less than the MSE in 11 of 20 cases). Also,
for Bayesian inference the agreement between the MSE and mean PSD in table 10 generally
appears to be just as close as in table 2. This is of course not surprising, because the PSD for
Bayesian inference are based on the exact finite sample posterior distributions of parameter value
draws rather than on asymptotic sampling theory.

A problem with MSM-GHK that is not apparent from table 10 is the difficulty involved
in solving the simulated moment conditions. The Gauss-Newton iterations used to solve the
simulat.ed moment conditions are given by:

N J J
Delta() = ¥ Y Wyld; — BG o1y, Y, W9P(+)/0617

N
i=1j=1 i=1j=1

where the W;; are simulations of the quantities 613(-)/80)/13(-). Recall that these are the
asymptotically optimal instruments as M — oo, provided that the W;; are evaluated at an initial

consistent (but not efficient) estimate of . It is also important to note that the matrix

N J
HIDD Wijaf)( +)/361~! may be replaced by any positive definite matrix and the search algorithm
i=1j=1

is still guaranteed to eventualfy find a root. This means, for example, that one may evaluate

N J

Dy wijaﬁ(-)/ae]*l at an initial value of @ and then hold it fixed throughout the search.
i=ij=1

This leads to important gains in computational time because the cost of evaluating derivatives
on each iteration is avoided. Note that the calculation of the necessary derivatives for MSM
estimation is much more time consuming than for SML estimation. SML requires only that the
derivatives of the choice probabiiities for the chosen alternatives be calculated, while MSM

requires that the derivatives of the choice probabilities for all alternatives be calculated.
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One important problem that arises in solving the simulated moment conditions is
sensitivity of the results to the construction of the initial consistent estimate 6, of ¢ that is used
to form the optimal initial weights and as the starting point for the search algorithm. We find
that in models with small numbers of parameters the choice of 6, has very little impact on
parameter estimates and standard errors, so that, as a practical matter, obtaining an initial
consistent estimate of § is not even necessary. This also tends to be true in larger models if the
data is very well behaved (as in experiment 1). Rather than of:taining an initial consistent
estimate of 6 it is typically sufficient to start at some neutral values (such as covariance matrix
set to the identity, regressor coefficients set to zero, and constants set to zero or perhaps to
values that replicate the aggregate choice frequencies). But in more difficult estimation contexts
(such as experiment 2) the choice of 6, becomes important.

Another important problem that arises in solving the simulated moment conditions
involves the forming of the derivatives (613(-)/66)/15(-) that are needed to construct the step.
In larger models with badly behaved data the Gauss-Newton search algorithm described above,
where the derivatives (3P(-)/36)/P(+) are held fixed at their initial values, works poorly. We
suspect this is because as one moves away from the initial § the derivatives evaluated at that §
become less useful in determining an optimal step.

These problems of sensitivity of MSM estimates to initial values and difficulty in finding
steps once one moves far away from the initial § were quite severe in the second experiment.
We found that very different results were obtained if we started from SML-GHK parameter
estimates vs. starting from neutral parameter values, and that th¢ former results were much more
reasonable. Thus, we were forced to use SML-GHK estimates as starting values. Obviously,

it reduces the appeal of MSM-GHK if one must obtain SML-GHK estimates first.
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Overall, in the second experiment, Bayesian inference appears to have a clear advantage
over other methods. It dominates in terms of MSE for the B;k, and produces MSE that are
similar to MSM-GHK and SML-GHK for the other parameters. Also, the agreement between
MSE and mean PSD forl Bayesian inference is generally better than that between MSE and mean
ASE for the classical methods. MSM-GHK and SML-GHK results are similar in terms of
MSEs, but MSM-GHK dominates in terms of agreement between the MSE and the mean ASE.
It must be remembered, however, that SML-GHK has an important ease of use advantage, since

it was necessary to use SML-GHK estimates as starting values for MSM-GHK.

7. Conclusion

Overall, our results indicate that the performance of all the alternative simulation based
approaches to inference in the multinomial probit model is satisfactory. With few exceptions,
the methods produce parameter estimates or posterior means that are reasonably close to the data
generating values even in models with large numbers of parameters.

There are, however, some clear differences in the performance of the methods. Overall,
across experiments 1 and 2, it appears that Bayesian inference based on the Gibbs sampler
outperforms classical methods. We conclude this for two reasons. First, the MSE of the
posterior means generated by Gibbs sampling are usually at least slightly smaller that the MSE
of the classical point estimates (although this is certainly not universally true across all models
and all sets of parameters). Secondly, the performance of Bayesian inference does not
deteriorate so clearly as that of the classical methods when we move from the well behaved data

of experiment 1 to the less well behaved data of experiment 2.
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Among the classical methods it is difficult to chose between MSM-GHK and SML-GHK.
In the completely unrestricted model of table 1, MSM-GHK dominates both in terms of MSE
and agreement between mean ASE and MSE (the ASE for SML-GHK tends to underestimate
the MSE). But, as soon as equality restrictions are placed on the 'y}‘l (tables 2 and 3) the
performance of the two methods in terms of MSE becomes difficult to distinguish. Howevér,
in models where reasonable covariance matrix restrictions are imposed (tables 4 and §), MSM-
GHK has an edge over SML-GHK. In very simple models (tables 6-9) these methods are
indistinguishable. In the second experiment, MSM-GHK and SML-GHK produce very similar
results in terms of MSE, but MSM-GHK dominates in terms of agreement between MSE and
mean ASE. However, MSM-GHK suffers from a clear ease of use disadvantage that arises
because of the difficulty in solving the simulated moment conditions when the data is ill behaved
as in experiment 2. This actually forces us to use SML-GHK estimates as starting values for
MSM-GHK in order to obtain reasonable results. One clear result is that MSM-KS is dominated
by all other methods. Thus we conclude that, for models of this type, the choice between
estimation methods (i.e., MSM vs. SML) is of secondary importance relative to the choice of
probability simulator (i.e., GHK vs. KS vs. other alternatives).

Three of the methods we have studied—MSM-GHK, SML-GHK, and Bayesian inference
based on the Gibbs sampling-data augmentation algorithm—provide similar point estimates or
posterior means of parameters and similar bases for inference via their asymptotic standard
errors or posterior standard deviations iﬁ many of the models we consider. In this context, ease
of use comparisons and comparisons of computation times begome important. For this reason
we report in table 11 the results for each method of inference of regressions of computation

times from experiment one on the number of parameters in the particular model and this quantity



Table 11: Time Comparison

}

Predicted Time

| Method Constant | P P? |” P=5 | P=20 [ P=d40
! Simulated Mazimum Likelikood (SML-GHK) | 4563.87 | 452.88 | 26.95 | 7502.05 | 24401.76 | 65800.15
i Method of Simulated Moments (MSM-GHK) 1892.16 | 1374.02 | 7.08 | 8939.19 | 32203.37 | 68176.12
Kernel-Smoothing (MSM-KS) 3364.89 | 181.86 | 18.23 | 4729.95 | 14294.10 | 39807.16
: Bayesian [nference ™ 11760.23 | 242.34 | -4.46 | 12860.41 | 14822.49 | 14315.53
i Rayesian Inference ** 658.03 | 785.31| -4.77 | 4465.32 | 14455.65 | 24435.83

* 10,000 iterations

** level of relative numerical efficiency fixed so that ratio of numerical variance

to posterior variance is 0.10 for ¥7;

Note: P = number of parameters in the model. Time reported in CPU seconds on a SUN Sparc 10/51.
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squared. We also report the predicted computation times for models with 5, 20, and 40
parameters. Clearly, th¢ computation times for all the methods are of the same order of
magnitude. Computation times for SML-GHK and MSM-GHK are very similar in the first
experiment, but MSM-KS dominates by roughly a factor of 1.5 to 2. This fact is partially
explainable by the fact that we had difficulties in achieving convergence of the MSM-KS
parameter estimates to the same tolerance level as was obtained for SML-GHL and MSM-GHK.
In a number of the runs in experiment one, the MSM-KS algorithm terminated due to inability
to find an objective function improving step, rather than because convergence to the desired
tolerance had been achieved. Thus, the faster timings for MSM-KS are partially due to early
termination of the search algorithm. Bayesian inference using m = 10,000 produces similar
times across models regardless of the number of parameters. This is because the main time cost
in the Gibbs sampling algorithm is in drawing the latent variables, and this cost is independent
of the number of parameters. For the classical methods the main component of cost is the
calculation of derivatives, and this grows linearly with the number of parameters. Thus, Gibbs
sampling has a timing disadvantage relative to the classical methods for small models, but a
timing advantage in larger models. We also determined the number of iterations, m, needed to
achieve a relative numerical efficiency level (defined as the ratio of numerical variance to
posterior variance) of 10% for the parameter +;, in each of the nine models of experiment one,
and calculated the time necessary for Bayesian inference at those levels of m. In that case, the
time requirement for Bayesian inference does rise substantially with the number of parameters.
Given the fixed level of relative numerical efficiency, Bayesian inference still maintains a time
advantage over the classical methods for large models, and it no longer suffers a clear

disadvantage for small models.
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The differences in computation times that appear in table 11 do not seem great enough
to dictate choice of method. Note that computation times will depend on the parameters M for
the probability simulators and m for the Gibbs-sampling data augmentation algorithm. It appears
that our choices of M = 30 for MSM-GHK and SML-GHK, M = 100 for MSM-KS, and
m = 10,000 for Gibbs sampling generate roughly comparable computation times for all three
methods (i.e., well within an order of magnitude). Other reasonable choices for M and m would
not drastically alter this conclusion. Given this, we feel that programming time and ease of use
should be dominant considerations. Here, Bayesian inference and SML appear to have the edge
over MSM for the reasons discussed in section 6B.

It is impossible, bgsed on the results presented here, to provide any universal comparison
of computation times for the different methods, or any comparison across methods of accuracy
that can be achieved per hour of computation. Furthermore, extrapolation of the computation
times given here to other contexts may be very misleading. There are two main reasons for this.
First, the most important components of time for any method are programming time and actual
program “babysitting” time (i.e., the time one must devote to obtainjng starting values,
restarting programs that have “bombed” for various reasons, tinkering with optimization
algorithms in order to achieve convergence to an optimum, etc.). The real cost of these types
of time inputs is far greater than the cost of CPU time, yet these types of costs are extremely
difficult to quantify. Second, there are a myriad of reasons why even purely computational
times are very difficult to quantify exactly. As an example, note that MSM estimation requires
the initial calculation of the derivatives of the probabilities of all possible choices in order to
construct the optimal weighﬁng matrix. But on subsequent iterations this matrix is held fixed

and derivative calculations are not necessary. On the other hand, SML requires the calculation



40

of derivatives on each iteration, but only for the chosen alternatives. Thus, the calculation of
the initial weighting matrix for MSM is very time consuming, while subsequent iterations are
relatively fast. For SML all iterations are roughly equally time consuming. Cleariy, there is
some number of iterations large enough that MSM is faster than SML, but how many iterations
will be necessary in order to achieve convergence to an optimum is completely problem specific,
both in terms of model and data set. Also, MSM can become very slow if a number of restarts,
with recalculation of the weighting matrix, are necessary to achieve convergence. For Bayesian
inference based on Gibbs sampling on the other hand, the number of cycles necessary to achieve
a given level of numerical accuracy will depend on the serial correlation in the Gibbs draws,
which is again completely problem specific. Given these three caveats, we are unable to provide
any universal time comparisons that go beyond the simple statement of how long inference
required in our specific problems. Nevertheless, our experience leads us to believe that
implementation of all tﬂe methods that we have considered in workstatioh environments will be
comparable and quite feasible for a wide range of problems.

We conclude by cautioning that our results on relative performance of methods are
specific to the cross sectional multinomial probit model. For instance, in our other work
(Geweke, Keane, and Runkle 1994) we find clear advantages of MSM-GHK over SML-GHK

in the context of certain types of panel data probit models.
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