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1. Introduction

Gibbs sampling (Geman and Geman, 1984) in conjunction with data augmentation (Tanner
and Wong, 1987) constitutes a very useful tool for the solution of many important
Bayesian multiple integration problems (Gelfand and Smith, 1990). The method is
complementary to other numerical approaches, and is attractive and competitive in many
statistical models. This is consistent with the current rapid growth in the application of the
method to interesting problems by many Bayesian statisticians. It produces samples of
functions of interest whose distribution converges to the posterior distribution, but whose
constituents are in general never independently distributed and are identically distributed
only in the limit. In this context treatment of the compelling questions of convergence and
the accuracy of approximation has been informal.

The research reported here undertakes to place these matters on a more formal footing,
and in so doing render the Gibbs sampler with data angmentation a more systematic,
reliable, and replicable tool for solution of the Bayesian multiple integration problem. Its
thesis is that the failure of the Gibbs sampling process to produce independently distributed
realizations of the functions of interest is no inhibitor to learning about the means of these
sequences. Indeed, the problem of inference for the mean of a stationary process is one of
long-standing in time series analysis, with a number of solutions. We apply one of these
solutions here, showing how it yields systematic assessments of the numerical accuracy of
approximations to the expected values of functions of interest under the posterior. With a
formal distribution theory for the approximations in hand, it is straightforward to construct
diagnostics for convergence.

The paper begins in Section 2 with a brief exposition of the Gibbs sampler and data
augmentation, in the next section. The main methodological results are presented in
Section 3, together with a simple example constructed to provide some insight into the
typical serial correlation structure of the Gibbs sampler. In Section 4 the proposed solution
is applied to the multiple normal linear regression model with a proper normal prior on a
subset of its coefficients. The Gibbs sampler proves to be very efficient in treating this
problem, which is important in its own right in econometrics and is a key building block in
applying the Gibbs sampler with data augmentation to Bayesian inference in many other
statistical models. In Section 5 this application is extended to the Tobit censored regression
model. The formal treatment of convergence and numerical accuracy appears essential to
producing reliable results with the Gibbs sampler and data augmentation in this model.
Conclusions, together with conjectures about future research, are presented in the final
section.



2. The Gibbs Sampler and Data Augmentation

The generic task in applied Bayesian inference is to obtain the expected value of a function
of interest under a posterior density. In standard notation, this object is expressed

E[g®)] = log®)rO)L(®; X)d6 / [om©)L(®; X)d,

where 0 is the finite-dimensional vector of parameters whose domain is a subset of
Euclidean space ©; X is the observed data; g(0) is the function of interest; () is
proportional to a proper or improper prior density; and L(6; X) is proportional to the
likelihood function. In what follows, we shall suppress the dependence of the likelihood
function on the observed data, and denote the kernel of the posterior density p(6) =
T(B)L(6). We shall refer to the calculation of E[g(8)] as the Bayesian multiple integration

problem.

2.1 Other Approaches
In some cases p(0) and g(@)p(@) are of sufficiently simple form that it is possible to
obtain an exact analytical evaluation of E[g(6)] = f@g(e)p(e)delf@p(e)de, but the class
of such cases is much smaller than the class of problems routinely studied in statistics and
econometrics. Zellner (1971) provides a treatment of many of these cases, and the class
has not grown much in the 20 years since that volume was written. However, a rich
variety of methods of approximating E[g(0)] have emerged, and continues to broaden.
Series expansions of p(8) and g(8)p(6) provide one basis for these methods, including
LaPlace’s method (Tierney and Kadane, 1986) and marginal inference (Leonard, Hsu and
Tsu, 1989). Monte Carlo sampling from the parameter space © provides another line of
attack, including importance sampling (Kloek and van Dijk, 1978; Geweke, 1989) and
antithetic acceleration (Geweke, 1988). The various methods for solving the Bayesian
multiple integration problem tend to be complementary. For example, series expansion
methods lead to essentially instantaneous computations but provide approximations whose
accuracy cannot easily be improved or systematically evaluated. Monte Carlo methods
produce approximations whose accuracy is easily assessed and can be improved by
increasing the number of iterations, but the computations may be quite time consuming.
Both methods require preliminary analytical work, in the form of carrying out the series
expansions or constructing the importance sampling density, that can be tedious.

The objective of this research is to facilitate the application of two other closely related
Monte Carlo methods, which have become known as Gibbs sampling, and Gibbs sampling



with data augmentation. The utility of the Gibbs sampler, as proposed by Geman and
Geman (1984), for the generic task in applied Bayesian inference was recognized by
Gelfand and Smith (1990). The use of data augmentation in the calculation of posterior
densities was proposed by Tanner and Wong (1987). The potential of combining the two
is immediately evident.

2.2 The Gibbs Sampler

The Gibbs sampler provides a method for sampling from a multivariate probability density,
employing only the densities of subsets of vectors conditional on all the others. The
method is easily described in the context of our generic Bayesian problem. Suppose the
parameter vector is partitioned, 8" = (8(1y, 6(2)’, ... , O(s)). Further suppose that the
conditional distributions,

8) 1 {0¢1)s -+ » 813> Bir1) - 5 Os)} ~
POy - » O¢-1), OG+1) > O)] G=1,...,5)

are known, and are of a form that synthetic i.i.d. random variables can be generated readily

and efficiently from each of the pg(). Now let 6©Y = (@ E‘l’g egg})', e 5 80) be an

arbitrary pointin ©®. Generate successive synthetic random subvectors,

M| (gD W g © gy
oD 1{6, .., 8,8, ..., 9‘821}>

. L g © (© P =
PO - O () By - » O] G=1,..,9).

For subsequent reference, denote the composition of the vector after step j of this
conditional sampling process by 6’ = (98;’, s B(é))’, 0 (i(g)l)' s 6((2))’), and denote
its composition after the last step by 0(1) = 8(1s). We shall refer to each of the
conditional samplings as a step. We shall refer to the completion of the first s steps,
resulting in the vector 6(), as the first pass through the vector 6.

The second and successive passes are performed similarly. At the i’th step of the j’th
pass,

@) (g @ oG gDy~ p-rg®) G oG . gl
0160y -, 08, 05 ... 041} ~ pyIe®, ..., 6.9, 6D ..., 6GD,

and the composition of the vector is



N Gy Gy G-1)- G-Dn.
60" = [9(1) R 9(i) ’ e(i+1) - 8 (s) g5

at the end of the j’th pass the composition of the vector is

60 = (80, ... 6.

Under weak conditions outlined in Gelfand and Smith (1990), which amount to the
assumption that @ is connected, 60) converges in distribution to the limiting density
p(8). Moreover, the rate of convergence is geometric in the L; norm. To obtain these
convergence results it is necessary only to assume that each subvector 00) is visited
infinitely often. Thus, many variants on the cyclical scheme outlined here are possible.
For most applications the simplicity of the cyclical scheme seems to be compelling, but we
shall return to this question in the last section of the paper.

Since 80 converges in distribution to the posterior distribution p(-), the limiting
distribution of g(0®) is the same as the distribution of £(0) under the posterior. Given
independent realizations of 00, the strong law of large numbers would at once motivate
an approximation to E[g(6)] using sample averages. Of course, successive drawings are
not independent and in the applications reported in the literature, the Gibbs sampling
process is typically restarted many times, quasi-independently, in order to achieve a
sufficiently good approximation to independence. However, creation of an approximation
to independence is neither necessary nor desirable, and we shall retuarn to this point in the
next section.

The Gibbs sampler is an attractive solution of the Bayesian multiple integration
problem when the conditional densities are simple and easy to obtain. In the special simple
case s =1, one is sampling directly from the posterior density and convergence trivially
obtains in the first pass. This case is not inherently interesting, but it suggests that Gibbs
sampling schemes with small s may have convergence and computational efficiency
properties that are attractive relative to those with large s. At the other extreme, one can
take s to be equal to the dimension of the parameter vector, and use one of several generic
procedures for generating univariate random variables from an arbitrary distribution. Such
schemes are likely to be impractical, since the integrand changes at each step of each pass.

The Gibbs sampler is a competitive solution of the Bayesian multiple integration
problem when the form of the posterior density renders other methods awkward or
inefficient. For example, the derivation of series expansions or importance sampling
densities may be cumbersome, while at the same time the conditional densities p(i)(-) are



trivial. In the-two examples taken up in this paper, series expansions and importance
sampling densities can be constructed, but the Gibbs sampler is much simpler and
computations with it are very fast.

2.3 Data Augmentation

In many instances the posterior density p(6) does not immediately decompose into
subvectors with convenient conditional densities. However, there always exists the formal
possibility that one can reexpress the posterior density

p®) = fy:FOly)qy*)dy* = [ *O)r®)dy*,

and the conditional densities T(Bly*) and q(y*I6) may be well suited to the Gibbs sampling
scheme. (Of course, this may involve more than two-step passes: i.e., it may be necessary
to further decompose 6, 2, or both.) The introduction of &, proposed by Tanner and
Wong (1987), is known as data augmentation. The key to its utility is that the construction
of & is frequently natural rather than artificial. Indeed, in many signal extraction problems
and latent variable models, difficulties with the posterior density arise precisely because of
the need to perform this integration. In these cases, it is often easy to draw 6 and &
successively; it is not even necessary to write the posterior density explicitly. We shall
return to such an example, previously studied using the Gibbs sampler by Chib (1990), in
Section 5. In what follows, when we refer to the Gibbs sampler we shall implicitly include
the possibility of data augmentation.

3. Assessing Numerical Accuracy and Convergence

The Gibbs sampler, with or without data augmentation, suffers from the complications that
the sequences produced are neither independent nor identically distributed. To date, the
literature has dealt with these problems in ways that are informal and computationally
inefficient. Here, we suggest a careful and systematic treatment of the problem. This
treatment has three attractions. (1) It is computationally efficient, using virtually all the
sample evidence from the Gibbs sampling scheme. The example taken up in Section 5
yields drastic improvements in computational efficiency over that reported elsewhere, and
there is sound reason to believe that is the case generally. (2) Using standard techniques in
spectral analysis, the suggested treatment provides a standard error for the approximation
of E[g(8)] by corresponding sample averages of g(-) taken over the passes and steps of



the Gibbs sampler. (3) Based on these distributional results, a diagnostic for
nonconvergence of the Gibbs sampling scheme is constructed.

3.1 Serial Correlation and the Efficient Use of Information

We take up the dependence and convergence problems in succession. To begin, ignore the
convergence problem and assume that the sequence ©60) is identically but not
independently distributed. In general, a fully efficient use of the realizations of the Gibbs
sampling process might entail the computation of the corresponding value of g(-) at each
pass and step. To maintain this level of generality, consider the sx 1 stochastic process

G() = @) g®P). - . ., Oy G=1,2 ..p)

The problem is to estimate the mean of G(j), subject to the constraint that each mean of the
s x 1 vector is the same. Assume that the Gibbs sampling process, and the importance
function g(*), jointly imply the existence of a spectrum for {G(j)}, and the existence of a
spectral density Sg(w) with no discontinuities at the frequency ® =0. The asymptotically
efficient (in p) estimator of this mean is simply the grand sample average of all of the
g(ng); in our notation, it is (ps)'lil'(}(i), where 1 denotes an s x 1 vector of 1°s, and

Jj=1

we shall refer to this estimator as g,. The asymptotic variance of this esimator is
(ps)1’Sg(0)r (Hannan, 1970, pp. 207-210). We may obtain a standard error of
numerical approximation for the estimator by estimating Sg(0) in conventional fashion.
Moreover, estimation of the full spectral density may yield insights into the nature of the
stochastic process implicit in the Gibbs sampling scheme, as will be suggested in some of
the specific examples taken up subsequently.

While this method extracts the most information about E[g(0)] given the realizations

68, the pertinent practical decision is how often to compute the function(s) of interest g(-)

relative to the steps and passes of the Gibbs sampling process. The best decision would
reflect the relative costs of drawing 9((3 and computing g(-), and the degree of serial
correlation in the process {G()}. It is clear how this problem could be set up and the
solution incorporated in sophisticated software, but we do not enter into these issues here.
Instead, we conjecture that typically it will be satisfactory to compute g(e((i’;’) at the end of
each pass. Since there are no computations within passes, {G(j)} becomes a univariate
stochastic process and the asymptotically efficient estimator of E[g(6)] is gp =



p-l ZG(]) whose asymptotic variance is p-1Sg(0). The corresponding numerical standard
j=1

error (NSE) of the estimate is [p-1Sg(0)]/2. In all results reported in this paper, Sg(0) is

formed from the periodogram of {G(j)} using a Daniell window of width 2x /M, M =

(.3pl/2),

This method for assessing numerical accuracy can be applied to many variants on the
basic sampling scheme for the 68 Many of the applications in which the sampling process
is restarted many times can be analyzed in exactly the same way. For example, if every
m’th pass is used in an effort to induce quasi-independence in the computed G(j), the
estimated spectral density may still be used to provide a measure of numerical accuracy. In
fact this computation, or an equivalent computation, would appear necessary in verifying a
claim that {69} is a stochastic process which is essentially serially uncorrelated. Given
the methods proposed here, of course, there is no analytical constraint requiring the
construction of such a sequence in the first place.

3.2 Assessing Convergence

This formulation of the dependence problem also provides a practical perspective on the
convergence problem. Given the sequence {G(j)}, comparison of values early in the
sequence with those late in the sequence is likely to reveal failure of convergence. Let

P
£8 =1} 2 @ —pB zGo) @*=p-pa+1),
J:

and let SA g(0) and SB G(0) denote consistent spectral density estimates for {G(j),j=1, ..

»pAa} and {G(),j=p*, ..., p), respectively. If the ratios pa/p and pp/p are flxed,
with (pA +pB)/p <1, thenas p — oo,

(Ep - Ep)/AS&O +pd 801 = N, 1) 3.1)

if the sequence {G(j)} is stationary. We shall refer to the left side of this expression as
the convergence diagnostic (CD). This application of a standard central limit theorem
exploits not only the increasing number of elements of each sample average, but also the
limiting independence of ’gi‘} and gg owingto (pA +pB)/p < 1. These two conditions
need to be kept in mind when using this diagnostic, as must considerations of power. In
work to date we have taken pa =.1p and pg =.5p. These choices meet the assumptions



underlying (3.1), while attempting to provide diagnostic power against the possibility that
the {G(j)} process was not fully converged early on.

3.3 Preliminary Passes

In practice, one is free to choose the start of the sampling process. From the initial and
possibly arbitrary point 6(0), initial iterations may proceed before the sampling that enters
into the computation of gp begins. Indeed, a subsequent example will suggest that this
process is critical to gp whose numerical accuracy is reliably known. Computation of
g(0) is not required at this stage. In this paper the number of such presampling passes is
treated as a subjectively chosen parameter of the experimental design. With some
foundation of experience in this sort of exercise it should be possible to design algorithms
for terminating the presample passes and initiating the computation of gp, based on (3.1) or
similar computations.

3.4 Relative Numerical Efficiency

Variants of the Gibbs sampling procedure can be compared with each other and with other
solutions of the Bayesian multiple integration problem by means of a convenient
benchmark. Had the problem been solved by making p independent, identically
distributed Monte Carlo drawings {07, ..., Op} directly from the posterior density, and
E[g(0)] estimated as the sample average of the g(8;) over these drawings, then the
variance of this estimate would be var[g(6)]/p, where var[g(@)] is the posterior variance
of g(6). By contrast the variance of the Gibbs sampler is SG(0)/p. Following Geweke
(1989), we shall refer to the ratio of the former to the latter, var[g(6)]/Sg(0), as the
relative numerical efficiency (RNE) of the Gibbs sampling estimator of E[g(0)]. This
quantity is of great practical interest for two reasons. First, it may be approximated by
means of routine side computations in the Gibbs sampling process itself. While we cannot
in fact construct i.i.d. drawings from the posterior density, the Gibbs sampling estimate
var[g(9)] of var[g(0)] can be formed in the same way that the Gibbs sampling estimate of
E[g(0)] is formed. The ratio vﬁr[g(e)]/§c;(9) then approximates relative numerical
efficiency. The other reason for considering RNE is its immediate relation to
computational efficiency. The number of drawings required to achieve a given degree of
numerical accuracy is inversely related to the relative numerical efficiency of the Gibbs
sampling process for the function of interest: were RNE doubled then the number of
drawings required would be halved, and so on.



It is worth-noting that the RNE of the Gibbs sampling process is solely a function of
the serial correlation characteristics of the process {G(j)}:
T
RNE = var[g(8)//Sg(0) = (2r)! [Sg(w)dw® /Sc(0).
-
This formulation makes it clear that the relative numerical efficiency of the Gibbs sampling
process depends on the power of the spectral density of {G(j)} at ® =0, relative to the
distribution of its spectral density across other frequencies. Thus, relative numerical
efficiency may be quite different for different functions of interest. Furthermore, RNE is
not bounded above by one: in principle, efficiency many times that achieved by i.i.d.
sampling directly from the posterior density can be achieved by the Gibbs sampling
estimator of E[g(6)]. Heuristically, positive serial correlation of {G(j)} renders the
Gibbs sampling estimator less efficient, and negative serial correlation in {G(j)} renders it
more efficient.

3.5 A Constructed Example

It may be helpful to illustrate these ideas in a constructed example simple enough that an
analytical approach is possible. Consider the case of a bivariate normal posterior density
for 6= (81, 02)’, with zero mean and var(8;) = 633, cov(01, 02) = 612. Denote the
stochastic process corresponding to the Gibbs sampler by {6}, and suppose that the Gibbs

sampling design is
8] = (c1/0228' + g5 varey) = O11-0y/0n
8} = (c12/01D8] + & var(ez) = ©22- 6,/ o1

The spectral density of this bivariate process, at frequency w=0, is
o11(1412) 2012
S3(0) = (1-r2y1 , 12 =0%/61102.

2612 022(1+412)

By comparison, the posterior variance of 6 may be written



c11(1-12) o12(1-12)

Y = (1121 R
c12(1-12) o2(1-12)
and their difference is
207 1r2 612(1+r2)
S©0) - = (1121 : (3.3)
c12(1412) o1

which is not positive semidefinite. Consequently, the relative numerical efficiency of some
functions of interest of the parameters 01 and 6, would exceed one, while others would
be less than one, if the functions of interest are evaluated at the end of each pass. If the
functions of interest are evaluated after each step, then the pertinent difference is

c11r2(143r2)  ©12(3+12)
254(0) - T = (1-12)1
G612(3+12) G92(1+312)

Since this matrix is positive definite, the relative numerical efficiency for any linear function

of interest of the parameters must then be less than one.
To examine these results in more detail, let 013 =029 =1, 613 =.5Y2. Then the
eigenvalues of Sg(0) - Z are 4.1213 and -.1213, with respective corresponding

eigenvectors (.52, .51/2) and (5172, -5!2). The Gibbs sampling process induces
positive correlation between 63 and OJ This raises the variance of 9J + GJ and lowers

the variance of OJ OJ relative to the case of independence. In the case of 931 6%, the

reduction more than offsets the positive serial correlation in €.

Table 1 exhibits the numerical standard errors (NSE’s) and relative numerical
efficiencies (RNE’s) of four alternative functions of interest. The population values are
derived from Sg(0) and X . The results presented for p =400 and p = 10,000 are based
on a starting value chosen from the posterior density (possible in this constructed example,
but not possible generally) and no preliminary passes. The results for p = 10,000 agree
quite well with the population values. Those for p =400 agree well, except that the NSE
for the function of interest .5(01 - 62) is somewhat too high and the corresponding RNE is
therefore somewhat too low. This discrepancy can be traced to the smoothing of the

10



periodogram in the formation of the estimate Sg(®): this function has a minimum at @ =
0, and when p =400 the estimate at ® =0 is an average of periodogram ordinates
extending from -7/3 to w/3, which raises its value. When p = 10,000 the average
extends from -7/15 to w/15 and this effect is negligible.

Table 2 provides some estimated spectral density ordinates from the case p = 10,000.
The computations at frequencies other than ® =0 are not essential to the procedure, of
course. However, they are easy to produce and are given here to further illustrate the
differences in NSE’s and RNE’s for the different functions of interest. Note, in particular,
that for the first three functions of interest power is greatest at @ =0. Whenever this is
true, RNE must be less than one. For the fourth function of interest power is smallest at @

= 0, implying that RNE must exceed one.
4. Inference in the Linear Model with an Informative Prior

We turn now to a simple but important application of Gibbs sampling, the multiple normal
linear regression model, with a proper normal prior on a subset of the coefficients. The
example is simple because there is only a single parameter that prevents analytical solution
of the whole problem, in the case of linear functions of interest of the coefficients, or
integration by Monte Carlo sampling directly from the entire posterior density, in the case
of nonlinear functions of interest of the coefficients. The example is important in itself,
because the model is widely applied in many disciplines and informative normal priors are
frequently a reasonable representation of prior knowledge. It is also important because the
model and prior occur repeatedly as a key conditional distribution when more difficult
problems are attacked using Gibbs sampling. (An example is provided in the next section.)
The solution of this problem may then be applied in those cases. The strategy of
constructing such “building blocks” seems well suited to the research program of
constructing Gibbs samplers for many standard econometric models.

4.1 The Model and the Prior
To establish notation, write the multiple normal linear regression model,

vi = xiB + g g; ~ IDN(O, ¢2) i=1,..,n),
where x; is the i’th observationon a kx 1 vector of explanatory variables. Alternatively
the model can be expressed

y=XB +¢& &~ NQO, o2,
with each row of the nx 1 vector y and nx k matrix X corresponding to a single
observation. The likelihood function is

i1



L, ) = o™ expl- 2. (7ix{B) (7ix{B)20%] = o™ expl(y-XB)'(y-XP)/207.

i=1
Since the likelihood function is the essential representation of the model, the developments
reported in this section apply to any model that generates this likelihood function, including
one with stochastic explanatory variables. The vector of unknown parameters is 6’ =
B, o).
The prior density is of the form (B, 6) = w1(B)n2(c). The prior density for B is
expressed in terms of m (<k) linear combinations of B,

RB ~ NG, T) & mB) = exp{-2RB-D'TIRB-1)}
or

QB ~ N(g,Im) & m(P) =< exp{-2QB-9(QB -9},

where Q is a factorization of T-!, Q'Q = T-1, and q=Qr. When m<k this prior is
improper, but of course may be constructed as a limit of proper priors. The conjugate
uninformative prior m2(6) e« ¢! is assumed for o, although what follows could easily
be replicated for any one of the family of proper, inverted gamma priors for o, of which
m2(c) is a limit.

The posterior density may be written

p(B, 6) = @+ Dexp{[B- BO)ITV(©)IB- Blo)1}, (4.1)
with

o) = X'X +062QQ1X’y +62Qq) (4.2)
and

V(o) = 62(X’X + 62Q'Q)-L.

4.3)

4.2 Previous Approaches

Analytical integration of the posterior density is not possible, even for linear functions of
interest of the coefficients . Most practical approaches, including the one taken here, rely
on the observation that conditional on o, the posterior density for [ is multivariate
normal. Theil and Goldberger (1961) suggested that 62 be fixed at s2 =

(y-Xb)' (y-Xb)/(n-k), a procedure they termed “mixed estimation” because the mean and
variance of the posterior density can then be computed immediately using standard least

12



squares regression software, appending the n entries in y with the m elements of sq,
and the n rows of X with the m rows of sQ. Denote the point estimator

Brc = X'X+s2QQ Xy +s2Qq)
and the corresponding variance

varBrg) = s2(X’X +s2Q'Q)L.
In part because of this convenient description, the Theil-Goldberger mixed estimator has
proved popular and has been used in many applications.
Tiao and Zellner(1964) took up the problem of Bayesian inference for two normal
linear regression models with the same coefficients but unequal variances in their
disturbances. If one of the variances is known and the other is not, then the essentials of

this problem are the same as the one posed here. They show that an asymptotic normal
expansion of the posterior density yields the mean GTG and the variance v’é:(BTG ).

4.3 The Gibbs Sampler
We construct a two-step Gibbs sampler, based on the distribution of ¢ conditional on B,

and the distribution of 8 conditional on . The posterior density of ¢ conditional on B
is
p(oIB) < o @+ Dexp[-(y-XB) (y-XB)/262).

If we define SSR(P) = (y-XB)’(y-Xp), then

(SSRBY/SDIB ~ X2(m).

The posterior density of B conditional on ¢ is normal as indicated by (4.1) - (4.3).
However, it is computationally inefficient to invert the k x k matrix XX + 62Q’Q in each
pass of the Gibbs sampling algorithm. Instead, let L be a factor of (X’X)-1, LL' =
(X’X)-1. Let L'Q’QL have diagonalization PAP’: ie., A is a diagonal matrix of
eigenvalues of L’Q’QL, and the columns of P are the corresponding, ordered
eigenvectors normalized so that P'P = PP’ = Iy. Finally, let H = LP. (These
computations are only performed once, prior to the Gibbs sampling passes.) Then the
variance of B conditional on ¢ may be expressed
(0 2X'’X +QQ)! = H(c2ly + A)1H’.

13



This leads to a-simple construction for B given ©. Construct € ~ N(0, Iy); scale g by
(62 + Ay)"12 to form the vector {; form m =He; and then add the mean vector

(0 2X’X + QQ 62X’y + Q) = H(o2k + Ay IH' Xy + 62Q'),

using the right hand side of this expression to perform the computations. The number of
multiplications required is proportional to k3, the same as for matrix inversion, but the
computations are nearly three times as fast for this method, suggesting that the factor of
proportionality must be about one-third that for direct inversion.

4.4 A Numerical Example

This Gibbs sampling algorithm for Bayesian inference in the normal linear model with
informative normal linear priors on the coefficients was coded in Fortran-77 using the
IMSL Math/Library and IMSL Stat/Library. The results reported here were executed on a
Sun Sparcstation 4/40 (IPC), in 64-bit arithmetic. We report results using 400 passes and
10,000 passes. For 400 passes, Gibbs sampling time was 0.32 seconds and the time
required to form the periodograms and compute spectral density estimates at 21 ordinates
was 4.2 seconds. For 10,000 passes, Gibbs sampling time averaged 7.78 seconds and the
spectral computations averaged 17.28 seconds.

The results reported here are based on artificial data from a model with k = 3
regressors. One regressor is an intercept term and the other two are orthogonal standard
normal variates. The disturbance term is also standard normal. The coefficients are all 1.0.
(Since the vector of coefficients [ is generated jointly, conditional on &, in our Gibbs
sampling algorithm, results will not depend on the structure of the design matrix X’X; the
orthogonal structure taken here is simply a convenient one.) The sample size is n = 100.
Hence, with an uninformative prior the posterior distribution for  would be a multivariate
Student-t distribution with 97 degrees of freedom, mean approximately (1, 1, 1), and
variance approximately proportional to (.01)I3. The informative prior employed is B ~
N(r, (O1)I3). Thus, the prior and the data are equally informative in the sense that the
precision matrices associated with each are about the same.

The initial values for the algorithm are taken from the least squares estimates, one
presample value was generated and discarded, and then the successive passes with
computation of functions of interest at the end of each pass were initiated. Hence, Bt =b
= (X'X)1X’y and oD = (s2)1/2, where s2 = (y-Xb)'(y-Xb)/(n-k); PO and o are
discarded. This was done for the five alternative settings of the prior mean, r, reported in
Table 3. When the prior mean is many standard deviations away from the sample mean,

14



the initial values are violently unrepresentative of the posterior. Nevertheless, the
diagnostics indicate no problems with convergence. Examination of the actual early values
generated shows that the 60) sequence moves immediately from the neighborhood of 2,
which is far too low when r is far from (1, 1, 1), to values consistent with the mass of the
posterior for . The contrast with the mixed estimates, in this regard, is striking. The
variance matrix (4.3) associated with this estimate implicitly takes s2 as representative of
62, and does not reflect the larger plausible values which are implied when the sample and
prior means are far apart. In the context of the asymptotic expansion of Tiao and Zellner
(1964), that approximation is good to the extent that the data dominate the prior, a
circumstance markedly uncharcteristic of situations in which the sample and prior means
are far apart in the metric of sample precision.

The results in Table 3 strongly suggest that the Gibbs sampling algonthm provides an
adequate solution to the problem of Bayesian inference in the normal linear model with an
informative normal prior on the coefficients. Three aspects of the results support this
conclusion. First, convergence beginning with the least squares estimates is essentially
instantaneous, even when these esimates provide parameter values at which the posterior
density is quite low. Second, the relative numerical efficiency (RNE) for all parameters
exceeds .5 and is often near 1. This might have been anticipated as an asymptotic result,
since B and o become independent as sample size increases without bound. In the
examples studied here they are not, especially for values of r far from the sample mean.
That the algorithm works so well in these circumstances is encouraging. Consistent with
(but not implied by) the RNE values between .5 and 1.2, spectral densities of all
parameters appear nearly flat, and are not reported here. Third, computation times are
reasonable. The structure of the problem and the experience with this example indicate
computation time of about (8.5 x 10-7)npk3 seconds. This implies reasonable desktop
computing times for most of the econometric applications of this model.
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5. Inference in the Tobit Censored Regression Model

Limited dependent variable models constitute one of the principal tools of applied
econometrics. In some of these models the dependent variable is dichotomous, reflecting a
decision to purchase or not purchase a durable good, whether or not to retire, etc. The
probit and logit models are often used in these situations. In other cases decisions are of
the form, “whether or not, and if so then how much?”. This characterizes the form of
many investment decisions, like the construction of a plant, and consumption decisions,
like the purchase of an automobile. The Tobit model, introduced by Tobin (1958) is
probably the most widely applied model in these situations. The monograph of Maddala
(1983), and the three chapters of Grilliches and Intriligator (1984) provide a thorough
discussion of these and related limited dependent variable models.

5.1 The Model and the Prior
To establish notation, write the Tobit censored regression model,

v;i =xiB + &, & ~IDN@©,62) (i=1,..,n), (5.1

[y}, if yf 20
{ (5.2)
L o, if y¥ <o.

yi

We observe {xj,y,}.[;; the xi’s are k x 1 vectors; the y;’s are scalars; and the y!’s are

unobserved. For notational convenience, order the observations so that the ¢ censored

observations (those for which y; = 0) come first, followed by the n - ¢ uncensored
observations. Let y, =(Yc41, ..., yn), and let X3 = [X¢41, -.. » Xp]. Then the kernel of

the likelihood function is

C
TI[1 - ©(:{Bo)lo-exp(-(y2-XaB) (72-K2)/20%).

The prior density is exactly the same as that employed in the previous section: n(B, 6) =
T1(B)2(0), with the prior density for B expressed as m (<k) linear combinations of P,

RB ~N@T) & m(B) o exp{-34RB-ryT-I(RB- 1)}
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or

QB ~ N(@.Im) & mi(P) = exp{-HQB-a)(QB- )},

where Q is a factorization of T-1, QQ = T-1, and q=Qr; 73(0) =< o-l. The
posterior density may be written
c Y

p(®, 0) o II[1 - Dxip/o)]o-exp{[B - B TV(©)I[B- Bo)l},
with '

Bl@) = X5X3 + 2QQ Xy, + 62Q9)
and

V(o) = 62(X3X5 +c2Q'QyL.

5.2 Previous Approaches

Maximum likelihood is well established as the principal method of frequentist inference in
the Tobit censored regression model. Maddala (1983) and Amemiya (1984) provide
thorough surveys. Bayesian inference in a closely related model that arises in biomedical
applications has been discussed by Carriquiry et al. (1987) and Sweeting (1987). The
most thorough Bayesian treatment of this model is provided by Chib (1990), who has
implemented and compared Monte Carlo integration with importance sampling, Laplace
approximations, and Gibbs sampling with data augmentation. The implementation of
Gibbs sampling and data augmentation reported here extends Chib’s treatment in three
dimensions. First, the methodology of Section 3 is used to adduce evidence on
convergence and the accuracy of the numerical approximations. Second, an informative
prior is permitted, whereas Chib (1990) uses only uninformative priors. Third, the
research reported here entails a controlled study of the effect of alternative starting values
and convergence. The outcome suggests caution in interpreting informal diagnostics for
convergence.

5.3 The Gibbs Sampler with Data Augmentation

Construction of a three-step Gibbs sampler with data augmentation is straightforward.
Conditional on B and ©, y} has a truncated normal distribution, constructed from
N(x{B, 02) truncated above at 0; i.e., the p.d.f. of y} is

[ [1- &xfp/o)Ilexpl-(v - xiB)2/262)], y} < 0;
f(YT l B’ G) = {
Lo, y¢>o0;
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for i=1,...,¢c; y} = y; for i=c+1,..,n An algorithm for generating from the
truncated univariate normal distribution, described in Geweke (1991) and considerably
faster than either naive rejection methods or the conventional construction of Devroye

(1986), is employed. This data augmentation constitutes the first step of the Gibbs sampler.
Conditional on {y} "_;» the problem reduces to precisely the one set forth and solved

in Section 4. This constitutes the second and third steps of the Gibbs sampler with data
augmentation.

5.4 A Numerical Example
An artificial sample of size 200 was constructed, using a data generating process similar to
Wales and Woodland (1980):

Xi3, Zi2, zi3 1D Uniform (-1, 1);
X2 = zpp + 2zi3 + g, with uj ~ N, 1.312);
& .~ N(O, .6428);
yi = -1.1854 + 1.0xjp + 10.0xi3 + &

[y%, if yf 20
vi = 1§
Lo, if y* <o.

The five random variables xi3, zj2, zj3, uj, € are mutually and serially independent. Of
the generated sample, 114 observations are censored.

A small, full-factorial experiment was conducted. The total number of passes was
taken to be either 400 or 10,000; no preliminary passes were taken, or the number of
preliminary passes was set equal to the total number of passes; and four alternative initial
values for 0 = (B1, Bo, B3, ©2)’ were used. The four alternative starting values were:

(i) Uncensored ordinary least squares. B is the least squares vector and 62(0) is the
corresponding value of s2, from application of least squares to the full set of 200
observations with yj =0 for censored observations;
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(i) Censored ordinary least squares. B0 is the least squares vector and 62(0) is the
corresponding value of s2, from application of least squares to the 86 uncensored
observations.

(i) The augmented posterior mode. The augmented posterior density is a function of
118 variables. A computationally efficient method of finding this mode is to apply
the Gibbs sampling algorithm with data augmentation, except that each vector is set
to its conditional modal value rather than generating from the conditional posterior
density.

(iv) 'The augmented posterior mode with censored 62(0). This is a hybrid of (ii) and (iii),
BO from (ii) and 620) from (jii).

Estimated posterior means and convergence diagnostics for all 16 cells are provided in
Table 4, along with numerical values for the initial vectors. Table 5 provides greater detail,
for some selected cells in which convergence diagnostics were satisfactory. Table 6
provides the estimated spectral densities of the sampled parameters from two of the cells.
As a final check on the results reported here, the last cell in Table 5 was reexecuted, but
using 1,000,000 preliminary passes rather than 10,000: the results were within the range
anticipated from the NSE’s for that cell. The computation times reported in Table 5 were
realized on a Sun Sparcstation 4/40 (IPC), with software written in double precision
Fortran-77 using the IMSL Math/Library and IMSL Stat/Library. These times correspond
roughly to a 20-fold increase in speed over the similar computations of Chib (1990), who
used a 16 Mhs 3 MB personal computer with the Gauss programming language.

The results of these experiments can be organized in several dimensions.

(1) 400 passes are generally insufficient for convergence. Only one of the eight cells,
with augmented posterior mode initial values and 400 preliminary passes, performs
satisfactorily. Poor convergence diagnostics correspond to estimated posterior
means that are up to one-half posterior standard deviation from the values reported in
Table 5. Thus, reasonable but unconverged values could be significantly
misleading.

(2) Consistent with this finding, preliminary passes are important in producing reliable
results. In many cells, preliminary passes are necessary to produce satisfactory
convergence diagnostics.

(3) The augmented posterior mode exhibits strikingly better performance as an initial
value than do the other initial values. From one perspective this is surprising. At the
augmented posterior mode most of the yj lie on the regression plane xiB -- i.e., the
corresponding e’f are set to zero. Since 114 observations are censored this

produces a very low value of 62(0), and increasing the value of 620 to a more
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reasonable value, which was done in the final cell of the experimental design in this
dimension (see (iv), above) makes matters worse rather than better. The
corresponding values of B(0) are no closer to the posterior mean than the other initial
values in the experiment. From another perspective, this outcome is not surprising,.
At the augmented posterior mode the 118-dimensional density relevant for Gibbs
sampling with data augmentation is high (by definition), and given the smoothness
inherent in this problem movement in the various dimensions is more likely and
hence convergence is more rapid starting from this point.

There are quite substantial differences in the serial correlation properties of the
sampled parameters, as indicated in Table 6. The parameters ; and B3 exhibit
very strong positive serial correlation, to the extent that a poor picture of the pattern
emerges with only 400 observations. Virtually without exception, these are the only
parameters that exhibit poor convergence diagnostics. With a small number of
observations it is impossible to distinguish between nonstationarity and high power
at low frequencies. For our purposes the distinction is uninteresting, since either
will lead to unreliable approximations of posterior moments if the number of passses
is too small.

As is necessarily the case, these parameters exhibit poor RNE’s. The Gibbs sampler
with data augmentation requires about 20 times as many passes as direct Monte
Carlo sampling from the posterior would require independent samples (were that
possible). From this perspective, the effective number of passes in the experiment
is either 20 (when p = 400) or 500 (when p = 10,000) for B; and P3. Thisis
consistent with our inability to obtain satisfactory results for these parameters when
p = 400.

6. Conclusions

Gibbs sampling with data augmentation is an attractive solution of the Bayesian multiple
integration problem whenever the parameters of the (augmented) posterior density can be

grouped in such a way that the distribution of any group conditional on the others is of a
standard form from which synthetic sampling is straightforward. As our ingenuity in

expressing posterior densities in this form increases, many standard models become

ammenable to Bayesian treatment using this method. It now appears that most of the
standard applied econometric models can be cast in a form appropriate for Gibbs sampling.
Even more promising, awareness of the Gibbs sampler and data augmentation are likely to
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suggest new models that are ammenable to Bayesian inference, that are intractable using
analytical or other numerical methods.

Yet one must be cautious. A great attraction of this approach, not to be minimized, is
that it is in general straightforward to apply relative to other numerical methods. This
means that less of the investigator’s time is spent on arcane numerical issues, mistakes are
less likely to be made, and incorporation into interactive software is more practical. But
there is no small distance between having a method justified solely by a convergence result,
and one which reliably produces approximations of integrals whose accuracy can be
reliably assessed. Formal assessment of convergence and numerical accuracy are essential
to rendering the Gibbs sampler a tool of replicable scientific studies, because of the pseudo-
randomness inherent in the method.

It is risky to speculate on productive avenues of future research based on the limited
collective experience with the Gibbs sampler in Bayesian inference, but three seem clear.
First, it is practical to write software that varies many aspects of the experimental design
implicit in the Gibbs sampler, so as to produce satisfactory outcomes and economize on
machine time. For example, preliminary passes can be used to compute convergence
diagnostics, measure relative computation times for Gibbs sampling (on the one hand) and
computation of functions of interest (on the other), and get at least a rough estimate of the
spectral densities of the sampled processes at the zero frequency. This would determine the
number of subsegent passess needed to attain desired numerical accuracy, and the
appropriate points for computing functions of interest. Second, it would be very helpful to
obtain additional insight on the relation of the internal structure of problems to the
stochastic properties of the Gibbs sampler. The results presented here are suggestive, but
serve mainly to raise questions. Can we use information about serial correlation to
structure the pattern of steps within passes to achieve greater computational efficiency? Is
the use of the augmented posterior mode, which proved very helpful in the example in
Section 5.4, an attractive starting point for most problems? Finally, the Gibbs sampler
with data augmentation is inherently an asyncrhonously parallel algorithm, in which nodes
compute inner products. This distinguishes it from other approaches, like Monte Carlo
integration which is inherently distributed and series expansions which are inherently
serial. Thus, there is at least the possibility that this method could prove practical and
highly competitive in an environment of parallel architectures.
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Table 1

Gibbs Sampling in the Constructed Bivariate Normal Example
of Section 3.6

Function of Interest, g(0): 01 062 .5(01+67) .5(61-62)
Population values:
E[g(6)] _ .000 .000 .000 .000
sd[g(6)] 1.000 1.000 924 .383
NSE 1.732Np 1.732/Np 1.707Np 293/Np
RNE .333 333 293 1.707

Gibbs Sampling, 400 passes (.09 seconds):

E[g@)] -.046 -017 -.032 016
$d[g(0)] 961 .998 .901 .384
NSE .081 .088 .083 016
RNE 352 318 .293 1.389
CD -.137 674 291 -1.513

Gibbs Sampling, 10,000 passes (1.89 seconds):

Elg(0)] 014 .005 .009 .004
$d[g(0)] 1.019 1.021 .945 384
NSE 0171 0173 .0169 .0029
RNE 355 350 311 1.810

CcD 147 375 267 -.588



Table 2

Estimated Spectral Density Ordinates
for the Constructed Bivariate Normal Example of Section 3.6

Computations based on 10,000 passes

Function of Interest, g(0): 01
Frequency, :
On 2.916
Ax 2.677
27 1.890
3 1.171
Amw 765
Sw 594
.6 488
JIw 405
.8n .349
I 363
n 326

02

2.969
2.590
2.000
1.257
742
.602
484
414
390
353

342

5(01+67)

2.861
2.533
1.826
1.070
.603
438
325
254
210
179

.163

.5(01-62)

.081
.100
119
.144
.150
159
.160
155
.159
178

171



Table 3
Linear Model with an Informative Prior

(See Section 4.4 for description)

Mixed Estimate ------- Posterior, p = 400 Posterior, p = 10,000------
Parameter Mean s.d. Mean s.d. NSE RNE CD Mean s.d. NSE RNE D
r=({,1,1)

B1 937 .073 939 065 .0032 1.028 -.631 936 .066 .0007 904 -123

B2 1001  .073 .99 .069 .0033 1.075 -152 1.001 .066 .0007 .970 -555
B3 1045 075 1055 .064 .0034 881 -548 1046 .068 .0007 969 251
o2 823 .118 .0060 968  .025 818 .121 0013 851 -457

r = (L5, 1.5, 1.5)

B1 1153  .073 1185 .072 .0039 .830 1.017 1.185 .074 .0009 .720 -.041
B2 1222 073 1245 .070 .0036 913 521 1249 .072 .0008 .736 -.202
B3 1288 .075 1306 .072 .0034 1.111 892 1311 .072 .0007 1.069 -913
o2 1020 .155 .0095 .663 .857 1019 .164 .0021 .590 -498

r =(2,2 2

B1 1370 073 1.638 .094 .0063 .557 -1.625 1.647 .095 .0012 .615 -.927
B2 1443 073 1685 .085 .0048 .775 -1.570 1.691 .092 .0011 .663 -.873
B3 1.530 .075 1746 .091 .0060 .579 -2.142 1752 .089 .0010 .797 -1.754
o? 2292 409 3.146 423 -2991 2333 439 .00620 .502 -.929

r = (6, 6, 6)

B1 3.100 073 5930 .110 .0059 .59 -403 5926 .102 .0011 .868  .208
B2 3210 .073 5928 .098 .0051 928 -102 5931 .100 .0010 1.067 -2.729
B3 3468 075 5949 .096 .0055 .759 1.216 5943 .098 .0010 982 -.459
o? 7350 11.05 528.6 1.093 -1451 7433 1074 10.65 1.017 -2.001

r = (11, 11, 11)

B1 5266 .073 10962 .105 .0050 1.086 -242 10963 .103 .0010 1.114 -.305
B2 5420 .073 10961 .095 .0045 1.119 .108 10966 .099 .0010 .896 1.211
B3 5891 075 10975 .093 .0051 847 -773 10972 .097 .0010 .960 -.757
o2 2963 4366 2507 .758 -1.163 300.3 44.08 41.64 1.121 -280



Table 4

Convergence Diagnostics, Tobit Censored Regression Model

Initial value: Uncensored OLS (B; =1.871, By =.801, B3 =4.082, 62 =2.357)

------------- 400 passes ------------- ----------- 10,000 passes -------------
O preliminary 400 preliminary 0 preliminary 10,000 preliminary
Mean cD Mean CD Mean CD Mean CD
B1 -1.272 3.098 -1.328 -3.719 -1.322 4711 -1.318 3.663
B2 929 -1.242 936 1.037 936 -.682 936 -1.517
B3 .9.941 -2.877 10.038 3.641 10.028 -4.487 10.025 -3.817
o2 785 1.415 714 1.358 718 901 J17 617

Initial value: Censored OLS (B =-.898, B =.928, B3 =9.423, 62 =.677)

------------- 400 passes ------------- -------—-- 10,000 passes -------------
O preliminary 400 preliminary O preliminary 10,000 preliminary
Mean CD Mean CD Mean CD Mean CD
B1 -1.255 4.212  -1.281 -1.491 -1.336 2.083 -1.311 1.151
B2 935 -.648 931 3.226 936 -1.002 935 1.600
B3 9.912 -3.591 9.943 1.368 10.051 -1.754 10.010 -1.160
o2 757 1.455 718 .390 721 .672 J15 125

Initial value: Augmented posterior mode (B1 = 1.043, B =.928, B3 =9.624, 62 =.293)

------------- 400 passes ------------- ----------- 10,000 passes --~----------
O preliminary 400 preliminary O preliminary 10,000 preliminary
Mean CD Mean CD Mean CD Mean CD
B1 -1.231 4.138 -1.304 -.650 -1.320 -1.176  -1.326 .817
B2 930 -2.532 937  .380 935  .966 934 1.159
B3 9.874 -4.021 9998 -.693 10.025 .947 10.038 -1.071
2 763 1.570 J11 0 .507 J17 1.032 714 1.613

Initial value: Augmented posterior mode, censored ©2
(B1=1.043, By =.928, B3=9.624, 62= 677)

————————————— 400 passes ------------—- -=------—-- 10,000 passes -------=--=--
O preliminary 400 preliminary 0 preliminary 10,000 preliminary
Mean D Mean (D Mean (D Mean CD
B1 -1.298 5.920 -1.305 -3.194 -1.327 2780 -1.314 -1.946
B2 927 -.616 932 431 933 -1.363 935 1.611
B3 10.000 -4.781 10.005 3.891 10.038 -2.855 10.017 1.573

o2 787 1.503 694 -.543 J19 .602 J17 0 .615



Table 5

Bayesian Inference, Tobit Censored Regression Model

Censored OLS initial value; 10,000 passes; 10,000 preliminary passes
Execution times: Preliminary passes, 96.49; Gibbs sampling, 96.06; Spectral, 17.26
Passes 1 - 1,000 Passes 5,001-10,000 -------cme-emv All passess ----=-=m-mmmmnm

Mean StDev Mean StDev Mean StDev NSE RNE CD
B1 -1.2985 .165 -1.316 .186 -1.311  .179 .0075 .057 1.151

B2 940 .062 934 .059 935 .059 .0011 .313 1.600
B3 9.985 .275 10.018 .309 10.010 .300 .0124 .059-1.160
o2 J15 0 111 714 113 J15 111 .0023 .226 .125

Augmented mode initial value; 10,000 passes; O preliminary passes
Execution times: Preliminary passes, 0.00; Gibbs sampling, 98.00; Spectral, 17.32
Passes 1 - 1,000 Passes 5,001-10,000 ------—-—-—- All passess --------------~

Mean StDev Mean StDev Mean StDev NSE RNE CD
B1 -1.334 .235 -1.308 .202 -1.320 .201 .0088 .052-1.176

B 937 .063 933 .060 935 .060 .0011 .279 .966
B3 10.040 .418 10.004 .340 10..025 .340 .0146 .054 .947
o2 752 .630 J11 111 J17 225 .0047 .231 1.032

Augmented mode initial value; 10,000 passes; 10,000 preliminary passes
Execution times: Preliminary passes, 97.11; Gibbs sampling, 100.43; Spectral, 18.30
Passes 1 - 1,000 Passes 5,001-10,000 ------—--—-—- All passess --=--~---=nmm-

Mean StDev Mean StDev Mean StDev NSE RNE CD
B1 -1.316 .190 -1.332 .195 -1.326 .195 .0086 .052 .817

B2 937 .061 933 .061 934 .060 .0011 .325 1.159
B3 10.014 .313 10..049 .326 10.038 .327 .0143 .053 -1.071
c2 728 120 J15 0 111 714 111 .0023 .235 1.613

Augmented mode with censored o2 initial value; 10,000 passes; 10,000 preliminary passes

Execution times: Preliminary passes, 96.71; Gibbs sampling, 97.18; Spectral, 18.03
Passes 1 - 1,000 Passes 5,001-10,000 -—----—----— All passess ------===--=---
Mean StDev Mean StDev Mean StDev NSE RNE CD
Bt -1.350 .189 -1.312  .187 -1.314 .188 .0083 .052-1.946
B2 940 .062 934 061 935 060 .0011 .291 1.611
B3 10.068 .319 10.017 .317 10.017 317 .0138 .053 1.575
62 722 (113 718 .116 J17 115 .0025 .215 .615



Table 6

Estimated Spectral Densities of Sampled Parameters,
Tobit Censored Regression Model

400 passes and preliminary passes 10,000 passes and preliminary passes

Frequency B1 B2 B3 o2 B1 B2 B3 o2
00w 1315 .0090 .4047 .0367 7360 .0110 2.0270 .0522
.05% 1305 .0084 .4061 .0368 2244 0089 .6178 .0406
.10x 1252 .0077 .3921 .0333 0486 .0077 .1369 .03351
A5% 0956 .0076 .2967 .0256 .0201 .0070 .0557 .0263
20 0314 .0070 .1045 .0225 0121 .0063 .0382 .0187
25T 0130 .0057 .0382 .0147 0092 .0054 .0285 .0146
30% 0085 .0050 .0262 .0121 0073 .0041 .0223 .0122
35% 0056 .0037 .0203 .0104 0059 .0036 .0175 .0100
407w 0044 .0032 .0180 .0085 0046 .0027 .0153 .0083
A45x 0039 .0025 .0143 .0074 0040 .0027 .0138 .0070
S0r 0039 .0020 .0142 .0062 0036 .0025 .0119 .0060
S5xm .0036 .0018 .0123 .0052 .0035 .0021 .0105 .0057
60w 0031 .0017 .0117 .0046 .0030 .0017 .0107 .0050
651 0027 .0016 .0103 .0038 0028 .0016 .0105 .0041
70w .0029 .0014 .0089 .0036 0026 .0016 .0098 .0038
5w .0029 .0013 .0095 .0032 0026 .0017 .0098 .0037
80w 0030 .0012 .0092 .0036 0025 .0016 .0091 .0034
85w 0026 .0011 .0084 .0034 0025 .0013 .0092 .0036
90x .0023 .0010 .0076 .0030 0028 .0013 .0084 .0034
95n 0020 .0007 .0060 .0024 0025 .0012 .0084 .0034

1.00% .0016 .0057 .0047 .0019 .0012 .0006 .0042 .0016



