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Systematically Missing Data in Econometric Models——
Some Identification Considerations

I. Introduction

The variables which enter macroeconometric models are
measured regularly, but at different time intervals. Thus,
net national product data are available quarterly; money stock,
biweekly; and interest rates, daily. This heterogeneity poses
both theoretical and practical problems for the model builder.
Despite attempts to construct "fine" models (in which the
variables are, for example, measured monthly) it is fair to
say that the method of resolution to date has been to construct
"coarse" models (measuring all variables, say, quarterly)
ignoring, or using in a nonsystematic or aggregated manner,
the intraquarter observations.

The approach taken in this paper assumes the variables
(which in practice may be residuals from fitted trends) are
realizations of a continuous, second-order stationary stochastic
process, Identification1 is achieved by projection of the
dependent process onto the independent process. Thus, if we
had the continuous autocovariance and cross-covariance functions,

or, equivalently, all of the own and cross-spectral densities,
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we would know the continuous model's parameters (lag distribu-
tions). It is with respect to this (idealized) data set that
the continuous model is identified; with respect to a set of
data consisting only of regular point samplings, the

continuous process is no longer identified. WNevertheless, by
projecting the sampled dependent process onto the sampled
independent process, a discrete model is identified with respect
to the sampled data set. Relationships between the parameters
of the discrete and continuous models were developed by Sims

in [10], for scalar processes. Emphasis was placed on condi-
tions under which the parameters for the continuous and discrete
models would be "close" to one another. In [3], Geweke extended

Simg' results to the vector case, and considered nonhomogeneously

sampled models as well (cf. footnote 9).

We can now imagine that the discrete model just mentioned
is a "fine" model in which, for example, all variables are
observed, say, daily. With such frequent data this model is
identified by projection and is thus analogous to the continuous
model above. Further, with nonhomogeneously sampled time
series or with uniformly less frequently sampled data, the
"fine'" model ceases to remain identified, but gives rise in
turn to "coarser" models, which are identified with respect to
the rate at which observations are being recorded. Thus we
have several models, all interrelated, and possessing varying
possibilities for identification.

The role of the continuous model may be likened to the



role of preferences in the theory of consumer choice: even
though they may not be our principal concern for inference, we
are well advised to postulate them as our primitive notion.

We will on occasion analyze the implications for the

discrete models which flow from hypothesized restrictions of
the underlying continuous model; and, reflecting our belief
that economic processes are ideally best modeled as continuous
phenomena, we should like to check the compatibility of any

assumptions placed on a discrete model with a continuous model.

II. Notation, Framework, and the Continuous Model

IxI Nx1
Let y(t), x(t) be jointly covariance stationary,

continuous, real, stochastic processes, where y will be
interpreted as the dependent and x as an independent, linearly
regular2 process. We assume that FX < (dA) i=1, ... N, and
Fyy(dk) are absolutely continuous wiihirespect to Lebesgue

measure, so in the (N+1)x(N+1l) spectral distribution matrix

of the (z) process, all elements have densities. Thus

Nx1l 1xl o o
Nx1 - _ —iAtse—r it
ny (t) = Ex(s)y(s+t)' = f_w e dey(A) = f_ms Sxy(A)dA
where
@ o F_(dN)
_ iwt _ iwt X -
x(t) =/f e dzx(w), y(t) =S e dzy(w), 5 Sxy(k),

-—=00 -0

and
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{dF ), A= w
Edzx(k)dzyiwi =10 A #F w.

S

Similar definitions and results hold for RXX(t) and Fxx(dl),
in notation (e.g., Fishman [2]) which is close enough to
standard3 to be understood. All random variables are assumed
to have mean 0, and we follow the usual econometric practice
of limiting ourselves to second-order moments for identifying
information.

We now consider the specification of model (4),

N

1) () = x"*b()Hu(t) = ( I b*x,)(E)+ult)
jop 4

N
= XS b, (8)x,(t-8)dstu(t)
j=l -0 j j

in which, for j=1, ... N,

(2) Exj (t)u(t+s) = 0,

all t, s, real. Substituting for u(t+s) in the last expression,

we have

N

Ex(t)y(t+s)' = E{x(t)( £ b *x.)'(t+s)},
jop 34

= * L=
or again, ny(s) R.xx b(s) where b (b1 “cen bN). But
b d 1 = =
ecause x and y are real, R y(s) R y(s) and R (s) R.x (s),

so we may conjugate, to obtain

(3) R (s) = R #b(s).



We have arrived at (3), which is equivalent to (2),
given (l),'that is, given that such a b(s) exists.4 But this
heretofore tacit assumption must now be investigated, as well
as the related question of covergence of the stochastic inte-
grals in x'*b. Perhaps (1) and (2) are consistent—-but
with the implied b(+) a generalized function5’6 (see Proposition
4). More to the point, no such b may exist. It is (y(t)|Hx),
the projec;ion7 of y(t) onto Hx (the space of values of the x
process; see footnote 2) which always exists, and (1) would

have been more accurately written.
W' y(t) = (y(t) [H )+u(t).

However, to restore (1) and to return to more familiar terrainm,

we have

-1
Proposition 1 if ]Sxx(w)[ # 0 a.e., and Sxx(w)Sxy(w) is the

(classical) Fourier transform of b(+) with absolutely integrable
components, then (1)' becomes (1): specifically, (y(t)|HX)

has the (kernel) representation

[
S b'(t-8)x(s)ds = x'"*b(t).
-00
Proof: The characterizing feature of orthogonal projection is
that <y(t)-(y(t)[Hx), x(s)> = 0, all t and s, where the
notation <y, z> means Ej;, or Eyz if the random vectors y

and z are real. Uniqueness follows essentially from the

requirement that (y(t)[Hx) be in Hx’ the Hilbert space formed



6
by completing, under the norm induced by <+, +> the set of all
finite linear combinations of x(t), t real. Now by the develop-
ment in Ro;anov, p. 28-35, there corresponds to (y(t)le) a
Sx—unique spectral characteristic

1xN 2
¢ (0), ¢eL7[s_ (wdw],

the latter term meaning

S oS _(0¢' (Wdw < o,

such that
[ee]

@) =5 e Pomz @an.

=00

For future reference, let's call the general correspondence 0.

Thus
0 2 * iex
¢++x¢, where ¢eL [Sxx(w)dw] and x¢ = I.mé ¢(A)zx(dk)sﬁx.

The integrability condition on ¢ is precisely that needed to
ensure convergence of the stochastic integral. Rewriting the
characterizing inner product which must be zero, substituting

for (y(t)]Hx), and conjugating yields

® RIYCED)

S E[zy(dl)zx(dl)—zx(dk)z;(dl)¢'(A)] = 0

-0
after exchanging the order of integration and using the

orthogonality of the increments processes. We arrive at

S
Xy

=~. \ = Y =V =
Sxx¢ s OT Sxy Sxx¢ , Wwhere ordinary transpose.
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But by hypothesis ¢' = Sxx Sxy = b, for "bel, ," i.e., some

b all of whose components are in Ll(—w, ©), We may thus

write
GIE) =7 Bz @) = 1 ' B (- P asz_an)
= [ B'(t-e)f ™%z (aN)ds = S B'(e-s)x(s)ds

= b'¥x(t) = x"*b(t)

The change of order of stochastic integration is possible by

the matrix generalization of Rozanov's Fubini-like Theorem 2.4;

be&l is exactly what is needed to allow this application. Q.E.D.
We shall not pursue the question of describing the

class E of 58L2[Sxx(w)dw] which are Fourier transforms of

Ll(—w, o) functions b except to say the elements of E must be

uniformly continuous and bounded; and obviously B is nonempty,

—ibw_e—iaw

since it contains e (in the scalar case),

—iw = X[a,b]
where X[a b](t) = 1, tela, bl, and vanishes otherwise.
k]

The continuous model may now be regarded as identified,

at least where S is nondegenerate, by b=s "ls ,» Where
XX XX Xy

although we have rigorously worked out only a classical case,
we shall not hesitate to interpret the symbols in the more
generalized sense of footnote 6. To be clear about this point

and to illustrate the force of Proposition 1 as well as the use

of several definitions, consider the continuous time model



y(t) = x(t-1)+u(t), Eu(t)x(s) = 0 all s and t.

iw

ny(s) Rix(s—l) and Sxy(w) = e

s “'s =&, while b is bounded and uniformly
xx Xy

continuous, it is not the Fourier transform of any Ll(—w, )

Sxx(w) follow directly.

Thus g

]

function. It is, however, the Fourier transform of 61(°),
the Dirac delta "function" with unit mass at 1: Gl(t) =

§(t-1), where § is the usual delta function. Thus e-iw =

o0
-iwt .
S e Gl(t)dt. Taking the point of view that ka and ny are

-
the data, we form g and check whether or not we are lucky
enough to be in the "gmooth" case of Proposition 1, in which
the effects of x(t-s) on y(t) are continuously spread over time.
In this case, they are not--they are concentrated at a lag of
one unit. Nevertheless the systematic effect, (y(t)le), is
the (well-defined!) ordinary random variable x(t-1l) which
corresponds under 6 to the spectral characteristic e_iw = ¢(w).
It is only when we try to express x(t-1) as a symbolic
convolution, x*b(t), that we run into the need of the
generalized function b(s) = 6(s-1). In short, generalized
functions (and especially their direct and inverse Fourier
transforms) can be used as an aid in discovering images of
the bijection 6, as we have done.

The sad fact, however, is that the continuous data,
(Sxx’ Sxy) or (RXX, ny), with respect to which the continuous
model is identified, are seldom at hand. Consequently, in

general, many b(-) vectors will be observationally equivalent



with respect to (even the doubly infinite idealizations of)
the discrete observational patterns that we are likely to
possess. Yet, as we will see, vestiges of identification may
remain.
ITI. The Discrete Models, And Their Identifiability By Means
of Projection

We consider three models which are all discrete samplings
of the variables in model (A), y(t) = x"*b(t)+u(t). Without
loss of generality we may regard Y(t) = y(t), t integer, as
observed once per period, less often than any of the independent‘
processes in models (B), (C), and (D) below.8 In model (B),

all of the variables X - XN are observed n, times per

19
period, where n, > 1. We call (B) the "fine" model, and write

N g=x
= - Sy &
4) Y(t) = jzl Sz_mfj;f(t nl)Xj(n1)+Uf(t)

(5) EXj(ﬁzﬁUf(t) = 0 all s, t integers; j=1, ..., N.

The upper case variables will always denote point samplings of

the lower case variables, so that

Xj(rtn_l) - xj(%;), t integer, i=1, ..., N.

In model (C),9 we assume that the independent variables are
numbered in order of their observational frequency, so that
x; (or Xi)’ is observed n, times per period, ny 20y 2 eee 2 Dy

We also assume that [ni/n l1=n./n 1° where [ ] is the greatest

i+l i it
integer function. This assumption is likely to be met
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approximately in practice: for example, if n, is 12 (monthly
data) and n, is 4 (quarterly data) then [nl/nz] = nl/n2 = 3,
We call (C) the "systematically missing data" modél——(discrete)

data are "missing" with respect to (B)--and we write

N s=x
(6) Y(t) = T I B.(t- 29yx, EO+u(n)
(I B B

(7) EUX. G =0 t, s, integer, j=1, ... N.
i

Finally, the "coarse" model (D) uses only the independent

variables corresponding to the times at which the least

frequently observed time series, XN is measured. It is defined

by
( N g=® ‘s 8
8) Y()= X I B,, (t= )X (=)+U0 (t)
J=1 g=—o ise oy Jdmy e

S —
9) EUc(t)Xjéagb =0 t, s integér; j=1, ... N.

Before beginning a systematic analysis, several remarks are
in order.

(i) Logically (C) may be regarded as the most general
of the discrete models, with (B) and (D) constituting the
special cases n, =n; and n, = Ny, i=1, ..., N, respectively.

(ii) Models (B), (C), and (D) all tacitly define the
distributed lag coefficients by the projection of sampled y
onto the relevant spaces of values generated by the sampled

X = (x1 e xN)"process. Consequently, we should be prepared

to put some effort into finding conditions under which the
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projections have the convolution representations indicated by
4), (6), and (8), respectively.

(iii) We could have rewritten (6) to appear closer

to (4) as follows:

N s=x
(6)' Y(t) = I I B, (t- 2%, E)+u(e),
3=1 g=— 3 T 37y

‘ s s r )
B, (t- n—) = 0, ;1-—'# o s, r integer; j=1, ... N.

I 1
Here, (6) or (6)' appears as (4) subject to the constraint
that when an independent variable is not available its coefficient
is zero. Similarly, (8) could be written (8)'--(6) under the
obvious constraints--or again as (8)''--(4) under even more
constraints. (8') and (8'') are omitted.

(iv) If our goal were to "predict" Y(t) given the
entire X process past, present, and future, sampled at the
intervals indicated in the models (B), (C), and (D), the
coefficients {Bj;f}’ {Bj}’ and {Bj;c} would give the predictions
which minimize mean-square error of predicted Y(t), oé(t)(B)
< Gé(t)(C) E.Gg(t)<D)- This follows because we are projecting
onto successively smaller subspaces and consequently being
left with successively longer normed residuals.

(v) One might interpret (D) as an equation from the
final form of a "current practice" econometric model when
ng = 1, where the X process is exogenous with respect to the

Y process, so that there is no feedback from Y to X in the

Granger-Sims sense.10 Remark (iv) would then suggest that
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"better practice" from the point of view of prediction,
abstracting'from sampling fluctuations, would involve use of
(C). Thus, assuming that the data are heterogeneous, (C) uses
all the data and optimizes; (D) ignores the more frequent
observations, to its detriment; and (B) is not feasible.

The remainder of the paper will be devoted to analysis
of the identifiability of and interrelationships among these
models. We begin with more notation, adopting that employed
in [3] and [10] wherever possible, and remaining consistent
with that introduced already. Thus an upper case variable
refers to a lower case variable, sampled. The same property
holds between the covariance functions, since RXY(E) =
EX(s-g)Y(s) = EX(s-%)y(s) = nyCg)- Analogously, RXCED
= RXCE). Since the next few propositions concern the relation
between models (A) and (B), to minimize subscripts we have

1
manipulation yields the discrete spectral density matrix

set n.=n and have dropped the "f" on Bj'f' The standard
]

SX(W), defined on [-nm, nm], in terms of

. % i nm ks 1 (wh2mmk) =
SX(W): R =S S (we dw=/ L 8 (wt2mk)e dw
XxXn X X
~oo -nm k=-c
nmw iw% nw iw%
=/ F s, ()1we "dw =S Sx(w)e dw,
~nm -nm

the third equality defining Fn [ 1.

By the assumption of finite variances of the X process,



i3
© nw
Rx(O) =j;“Fx(w)dW = f_nﬂSX(w)dw,
so we have integrability of each term of this positive semi~
definite Hermitian matrix. We already assumed det Sx(w) to
be nonzero a.e. on (-», «) and it is natural to make the same
assumption on SX(w) on [-nw, nawl. Equivaleﬁtly we order the
eigenvalues of Sx(w) as }\l(w) > Az(w) > ... )\N(W) and assume

AN(W) > 0 for almost all such w. Perhaps obvious is the

following.

Lemma 1 Finite variance of the X process--Var Xi < o, i=1, ... N—
implies integrability of Ai(w), i=1, ... N.

Proof: Since

N N
tr S (w) = T S_(w) = % A, W,
x i=1 ¥ i=1 1
N N am N nomw
¥ Var Xi = [ SX (wWdw = % [ Ai(w)dw.
i=1 i=1 -anr 1 i=1 -nmw

Finiteness of the left-hand side implies that each of

nw
S Ki(w)dw < », Q.E.D.
-
As indicated in remark (ii), a development analogous

to that employed in arriving at (3) would yield,

Ly = r #p(t
1) R, E = r )
where B is real, B'(ﬁ& = (Bl(ﬁ), ceny BNéﬁb), and now of course

the convolution is in discrete time. The same objections apply:

the existence of the representation B'*X(t) for (Y(t)IHX)
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has been tacitly assumed. But as before we can make this

assumption good by establishing

Proposition 2 Assume AN(W) > 0 a.e. on [-nm, nT] and that

-1 t
SX (w)SXY(w) is the Fourier transform of B(n) where
N t=00 £
Iz 'Bj(ﬁ)|< w,
jzl t=—c0
Then
N t=o . .
(Ye)|n,) = = I B,(t- 99X, (= = B'*X(t),
l X j=l {=w0c j n j n

so that model (B) is identified by projection.

1xN

Proof: Letting ¢(w) be the S_-unique spectral

X
characteristic of (Y(t)IHX), we have the latter equal to

T
S

-

eitw¢(w)zx(dw).

Proceeding as in the proof of Proposition 1 to write out the

meaning of orthogonality again yields SXY(W) = SX(W)EW(W), or

¢ = SX_]'SXY a.e., using the invertibility of SX ensured by

AN > 0 a.e. Now by hypothesis
t=co t
') = & ey,
n
t=-~00
where the absolute summability of B(+) guarantees absolute

and uniform convergence (as well as the uniform continuity of

SX-l(w)SXY(w)). Let € > 0 be given, and choose M so large that,
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for all we[-nw, nr] and all j=1, ... N,

_ t=M £ _ iW—t— _ ‘___8—
'¢j(w)-t§—MBj(E)e n| = lﬁj(w)l < N} |2 | [2m
am
where Ilklll = [ Al(W)dW'
-nm

which is finite by the lemma. Now by the usual isometry between
the time and frequency domains,

N t=M nm

( (t)l - ¢ B.(t- DHx.A . S 8'"(w)S_ (w)S(w)dw
6@~ T T 5 e Dx @11 7 6w,
nmw
- (ﬂ%%ﬁ"sx(")(ﬂ%%lT)'”“‘””z dw
-nm
nm Neg

< f A dw = g,
=S ORI [zm® = e
2 X 2
where [|s(w)|]° = = IGi(W)l
i=1

and the familiar inequality involving the Rayleigh quotient has
been used. Q.E.D.

We observe that the construction guarantees that 6" = i
be in L2[SX(w)dw], which is precisely the (so-called "matching")
condition that the convolution sum be convergent in mean
square. Indeed, assume that we find RX-l and "solve" (10) for
BC&) = RX_l*RXYCE)' Putting aside the obvious convergence
question involving the right-hand side, when we ask about
X'*RX_I*RXY, we are led back to the matching condition, since

the variance of this random variable will be, if finite,
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oo . ~ ] ~
I ReyRy "Sg Ry Ryydw-

-0

But now, the finiteness of this integral must be checked, or
assumed. We will pursue this approach, to derive different
conditions under which the desired representation B'*X(t)

holds.

The first step is to construct Rx—l. Its defining

property is

8o Sy, —1,t-8
I RQ% G = Sy

g=—00 i
n

where Gt is the Kronecker delta. This convolution requirement

n

1(w) = IN’ wel[-nm, nw] if R, and RX_1 can

translates into SX(W)SX %

both be Fourier transformed. Indeed, Wiener and Masani have
provided the theory which extends to the Hilbert space Ez (of
NxN matrices whose components are Lz[—nﬂ, nm], complex-valued
functions) the results we need, particularly the Riesz-Fischer
Theorem, Parseval's Identity, and the Convolution Rule. ({[8],
especially Theorem 3.9). Thus for RX(§) to be in &2, the
corresponding (sequence) Hilbert space of square-summable
matrices, we must have by definition that

g=o0

an 3 ISl

g=-00

n

g=co
F e
=0

g=w N N 5. (2
z Ellrijcﬁal ) € =,
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In this case,

8= s iwE
(12) SX(W) = T Rx(aﬁe n is in &2’ i.e.,

g==~00

nw 2

1 . _
> EE;-f_nwtr{SX(w)SX(w)}dw ((54(w), 8,())) I[sx(w)ll

Consequently, we will be able to Fourier transform RX to SX’

invert, and inverse Fourier transform provided that (12) is

-1 11 -1 L
met by SX and SX . Now SX and SX are in 9 if and only if,
respectively,
N N
I A and z L
i=1 i=1 Ai

are integrable, that is, if and only if

nm am
S )\1 (w)dw < o and [ z_dw <oo,
-nm —nﬂAN(w)

We may summarize this discussion as

Lemma 2 Provided the largest and the reciprocal of the smallest
eigenvalues of SX(w) are both in L2(-nﬂ, nr], RX—l exists,
uniquely, in 22.

As noted, the matching condition must be dealt with

explicitly. Here, it is evidently

fnﬂ R_'RIR dw <o
oy Ry Mgy <
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Now if ﬁx—l is essentially bounded above by which we mean there

exists ¢ > 0 such that cIN—ﬁx_l(w) is a.e, positive definite,
then we would have the matching condition satisfied whenever

RXYCE) is a square summable vector sequence, i.e.,

g=00 S=CX)

8 8 8y 12
I Ry @Ry @ = T IRy D g
8==00 B5=—00
g=c N s. .2 nw ~ -
= TRy D =S RGWR W <,
g=-c0i=] -n7
where as before || || stands for Euclidean norm, and we have

E
tacitly filled in a gap by defining the concepts for Nxl vectors

that had previously been defined for scalars and matrices. The
assumption that RXY(-) be square summable is a very natural one,12
especially in conjunction with RX(-)egq. Finally, we observe

that 4if ﬁx_l is essentially bounded above, tr S _lSX-l < tr

X
2 2 13
c -IN =c¢ N, which is integrable over [-nm, nw}, so that

the condition that X—%;y be square integrable is satisfied.
N

Likewise, if iX were bounded above, Al(w) would be square

integrable. But RX< d-IN is equivalent to ﬁx_l > d-l-IN,

i.e., RX"l being essentially bounded below. Taken together,

the discussion above entails

Proposition 3 If RXY(§9€&2 and if also: (a) SX is essentially

bounded above and below (so that SX—l is as well) or, if (b)

nw
J Ai(w)dw <o and SX is essentially bounded below (equivalently,

=nmw
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that SX-l is essentially bounded above); then RX has a unique
22 inverse'such that (RX-l*RXY)'*X(t) = (Y(t)IHX), i.e., the
matching condition is satisfied. Hence, the projection has a
convolution representation, and model (B) is again identified.

At this point, several remarks are in order.

(1) The question raised earlier about convergence of
RX—l*RXY(ﬁ) can be answered affirmatively, under the hypotheses
of Proposition 3, since

=00 =c0
T3 R EGLNR EE < (7 | IR, A %

g=—w j=1 j=1 s=-o

(t“s .)12}1/2 <

{EIRXY

a0

by the Schwarz inequality.

(ii) The approach of Proposition 3 squares with our
intuition in requiring a full rank condition on a structural
characteristic of the x process to be able to uniquely assign
coordinates to the coordinate-free concept of vector.

(1ii) The two preceding propositions apply to establish-~
ing the identifiability of Model (D), by taking n=]1.

(iv) While no direct reference to the spectral
characteristic of (Y(t)lHX) was made, it clearly is SX‘l.SXY'
But now, as the sum of products of L2[—nﬂ, nn] functions, this
spectral characteristic is no longer subject to the harsh

continuity requirements implied by the hypothesis of

Proposition 2.
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In summary, identification of models (A), (B), and (D)
has been achieved in two ways: rigorously, Propositions 1-3
indicate precise conditions for the commonly written distributed
lag relations to be valid; in the case of the cdntinuous model,
the more general methods of Fourier transformation of
generalized functions were indicated to be capable of providing
the desired identification. It ié not evident (to the author!)
how this latter technique would aid in identification of the

discrete model.14 Model (C) will be treated in Section V. We

i

now address the relation between the continuous b and discrete

B.

IV. On the Identification of the Continuous Model from
Uniform Discrete Data

We begin by examining the relation of Model (A) to the

model (B) (or (D) if n=1). It is useful to observe that

15
SXY is Sxy(w) n-folded, just as SX was Sx acted upon by Fn.
- o iw% nmw iw%
R — = = .
xy(n) f_°° Sxy(w)e dw f_mr Fn[SXy( Yi(w)e “dw
nm iw't-l;- ¢ T )
= f—nn SXY(w)e dw = Ry D

where, as before,

k=
RIS, (D16) = T 5 (wt2mk).

k=~co

The force of the equality string is the third equality, which

proves
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(11a) Fn[Sxy(-)](w) = SXY(W) a.e.

Taking y=x, or recalling the earlier result, yields
(11b) Fn[Sx(-)](w) = SX(W) a.e,

The left-hand side of both of these relations is 2mn-periodic,
so that the right-hand side is also, despite the fact that
when X and Y are regarded as discrete processes in their own
right, SX’ SXY’ and SXY are usually considered as defined only
on [-nm, nm]. Denoting (perhaps overly suggestively!) the
spectral characteristics of (y(t)IHX) and (Y(t)IHX) by g and

B, no further assumptions were required to write

(12a) S, (W) = 8 (MBGW, |w| < nr

and

i

(12b) Sxy(w) Sx(w)b(w).
Applying Fn to (12b) and equating with (12a) results in
(13a) SXY(W) = Fn[Sx(‘)b(')]
(13b) S (W)B(W) = F IS (-)b()].
-1
Assuming SX exists a.e. yields

14) B = 5T @F I8, (IB()] = F_[5. ()5 (BT a.e.

since a 2nm-periodic function can be passed through the Fn

operator.



22

Equations (13) and (14) express the general under-
identifiability of the continuous model from discrete data.
Xy and SY (which is irrelevant here), and,

from (12a), compute B(w). But since neither SX nor SXy is

We may observe SX’ S

available (only their folded versions (1la) and (1lb) are
observable), we cannot compute Sx—l(w)Sxy(w) = g(w) from (12b).
We interpret the right-hand sides of (13) and (14) as describing,
without making any further assumptions about the (Z) process,
precisely the set of g(-) which are consistent with the data-
determined left-hand sides. The nonidentifiability of b

results from the joint (and observationally inseparable)
operations upon it of multiplication by an unknown Sx(w)

matrix, followed by a folding of the product.

Consider first the conceptual unraveling of (11b), or,
equivalently the nature of the underidentification of Sx. For
any real process, Sx must: (1) be integrable, (2) satisfy
Sx'(w) = Sx(w) = §;?:§7; and (3) be positive semidefinite.

The latter requirement is sometimes strengthened to (3')

positive definite a.e. It is immediate from (11b) that the

[+ o]
same properties will hold for SX. Now define Nl'n = U {A+2mnk}.
3 k=_m
Choose any "allowable" Sx(-) and pick any AdNO.B, i.e., A£0

3
2
(mod m™). Any "decomposition" of SX(A), i.e., any sequence

of positive definite Hermitian matrices {Sx'k(A)} such that

k=oo
Sx(l) = X

k=—co

SX;k(A), can be spread over Nk;n to help form an

observationally equivalent spectral density matrix function.
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To thaintain the last equality in (2) we must form N—A'n
]
and a related sequence S_ . (-1) = S__ ()\). A perturbation
. x3k x:k

matrix function (which is zero a.e.) is defined by:

c
(0 we (M, UN_) )

Sx’k(k) w = A2mnk, k#0

(15) P(w) = { - ;ZEOSX L) W=
k ]

Sx’k(-k) w = —-A-2mnk, k#0

- Z S8 (=) w=-)
L x#o oKk

Consequently P(-w) = P(w) = P'(w)

Finally §x(w) = Sx(w)+P(w). Note that Fn[P](w) = 0.
By construction §x(w) is still an allowable spectral density
matrix function, and Fn[gx](w) = Fn[Sx](w) = SX(W), lwl_ﬁ nw,
so that both §X and Sx give rise to the same observed SX'
Admittedly, Sx and Sx don't constitute a very interesting
observationally equivalent pair;16 but this operation may be
performed simultaneously for all A, or all A in a set, E, of
positive measure.l7 This now describes exactly the set of all
§x(°) which are observationally equivalent to Sx(-).l8 The
easiest kind of nondegenerate special case would perhaps be to
take a-Sx(W) away from Sx(w) for w in, say, (m, 3 wn] and to
add these values to Sx(w) for w in (3mn, 5mn], 0 < o < 1, doing
the symmetric operation for negative w.

For short, we will describe this procedure as "selecting
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an allowable PX" where Px satisfies the restrictions just
described fgr P(w). Similarly, §xy = Sxy+Q, where, because
Sxy(k) = Sxy(—k), Q(\) = Q(-)A); and, of course, Q must satisfy
the "adding up" property Fn[Q] = 0. There is no requirement on
Q analogous to the positive definite Hermitian restriction
imposed on PX. The formal definition of Q(w) is identical to
(15) except that the Nxl vector Sxy;k replaces the matrix Sx;k.
"Selecting an allowable Qxy" means, as before, choosing a
nontrivial decomposition satisfying the conjugate symmetry
property, and is equivalent to selecting an observationally
equivalent S .
Xy

The observationally equivalent b may now be represented
as E+Ag, with a formula for Ab to be derived. The equation
b=3s§ _lS has two meanings: for the "true" (S , S ) it

X Xy _ x’> "xy

gives the "true" b; it also gives the form of identification--for
any potential (Sx’ Sxy) pair, the corresponding b is given by it.
Consequently, for b+Ab to be observationally equivalent to b,

there must be at least one allowable Px and at least one

allowable Qxy such that

~ -1
(A7) BB = (S 4P )77 (s, +Q, ).

+P )Ab = -P b
Rearranging yields (Sx PX)Ab be+Qxy which, depending on

whether it is folded or not, yields,
~ —1 -~
(18a) Ab(w) = (SX+PX) (—be+Qxy)

or
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(18b) Fn[SxAb](w) = —Fn[be](w).

(17) and (18a) are equivalent, and give the answer to the
question: which b are observationally equivalent to a given

19 may be observed? (18b),

(ﬂ, Sx’ Sxy) when only (SX, SXY)
which follows from (13b) as well, suffers since it makes no
mention of Qxy: if a Ab is found that satisfies it, the
question of whether there exists an allowable Qxy which is
consistent with (18a) remains. Finally, whilg all the
discussion has been in terms of the spectral characteristics,
adoption of the assumptions of the previous propositions allow
the interpretation of B and b as lag distributions.

Without making additional assumptions, it appears
nothing more can be said. However, by placing specific
restrictions on characteristics of the processes, it is
possible to proceed: either as in Sims [10] and Geweke [3],
to force b(+) and B(*) to be "close"; or, as here, to force
identification. In fact, extending an assumption analyzed
in each of these papers for different reasonszo leads to our
next result.

We need first to give two definitions, which might
be understood from their symbols without explanation. TFor a
sequence of vectors or matrices (RXY or RX) to be in &1 we
require their components to be absolutely summable; and for a
vector or matrix of (real- or complex-valued functions, SXY

or SX) to be in Ll we require that each component be
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absolutely integrable. As before, we have refrained from
including in the notation the domains which will be clear

from the context and may on occasion be noted explicitly.

Proposition 4 Assume: (i) ny(-) and Rx(-) are given between

the lattice points Ln = {ﬁﬁ t integer} by linear interpolation,
[ ] [ ] L

(ii) ny( ) and Rx( ) are in Ll’ and (iii) SX is essentially

bounded below. Then B(E? and b(t) are both identified from

t
(n) t integer’ where the

the discrete data; moreover, b(ED =8
n 0 otherwise
interpretation is that b(+) is a row of delta functions

with weights given by B(ﬁ) on the lattice points Lh'

Proof: (1) says that

+ 1
B D - falry Gl S + 2 15

and

t+s, _ . t 1 - s
Ry G = (olsDRy O lsRyy &+ & 7 1o
for t integer, and [sl <1l. ¢ : is taken to be zero at s=0.)
1-lw| [w] <1

t
and interpreting RXC—) and
0 lw] > 1 n

Defining ro(w) ={

RXY(E) as rows of delta functions with weights given by their

values on Ln’ we may rewrite assumption (i) as

t+s Z o tts | t+s.
RXG:;Q = f-mRXG:r'—W)rO(W)INdw= RX*ro-IN( " )

and
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thsy _ [ p (s _ - o (Ete
By o) = Ry O W rp (D Iydws Ryyp*r T (55

where, because of the finite support of ro(-) and the nature
of RX( ) and RXY(-), the integrals are sums of at most two
numbers. Ry and Rev will be in gq if they are in {.; that they
are in 51 follows from (i), (ii), and their sampling relation
to Rx and ny——indeed, any corresponding components have equal
21 and L1 norms. Thus, RXSEZ(EZ(—nﬂ, nn) displaying the
domain) so that

or
S kl(w)dw < oo}
=0T

with (iii), we have Proposition 3 in force, so that

~ _1~

~ I
B =Ry Ry = 5% Syy
is also in Ez and the classical-inverse Fourier transform nay

be applied to B to yield the B°' of model (B). Ry (+) and

RXY(-) as generalized functions have Fourier transforms which

0 N
obviously positive definite a.e. The convolution Rx thus has

are periodic. The Fourier transform of r,-I_ is g5—(1—cos w)-IN,
w

~

Rx = Ex-zz(l—cos w) which is clearly in Ez from consideration of
w

the right~hand side. The spectral characteristic, E, satisfies

b=8§ _1S ;21 if we had R = S and R =8 , then
x xy X X Xy Xy
~ ~ 2 -1,2 ~ =1~ ~
b = (RX-—f(l—cos w)) (—5(1—cos w)RXY) = RX RXY =B
w w

o

S Sx(w)ethdt,

-—C0

il

and the conclusion follows. We have Rx(t)
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U -

with Sx(°)e L But the relation R.x ++RX is the unitary

1
Fourier isomorphism alluded to in footnote 3, extended to
uz(—w, ©) matrices in the Wiener-Masani manner. (That the
components of RX (and so of ﬁ;) are in L2(-w, ©) can be seen
directly since they are in Ll(—M, «) and bounded.) With
Sx(-) and RX(-) both having absolutely integrable components,
the classical inversion theorem of footnote 3 applies. But
now Sx(-) is also seen to be boundgd, hence in Ez(—w, wi,

and it follows that SXH+RX, since +» agrees with the ordinary
Fourier integral when domain and range element are both in
Ll(—w, °°)ﬂLz(—oo, ©). (See [5], especially p. 510-513 for
E+.) But then Sx = ﬁx by the one to one propgrty of E+.
Q.E.D.

A computation in the proof showed that WZSX(W) =
ﬁx(l—cos w). The nonintegrability of the diagonal elements
of the right-hand side shows

)

I wzs (W)dw = », 1=1, ... N, i.e.,

- %44
that no component of the x vector can be mean-square differentiable,
an observation also noted in [3].

In the special case of n=l, the continuous model (A)
is identified from only the coarse observational structure
(D). It need hardly be said that the hypotheses are less
likely to be fullfilled in this case: 1linear interpolability

is required over longer segments. Indeed, by using X,, i such

i’
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that n, > s R (E ) may be computed and part of the inter-
i Xi ng
polability assumption thus checked when data of the model (C)

pattern are available.

A second situation with identification possibilities
requires the abandonment of the assumption that x be linearly
regular,22 since the latter implies that Sx(') has the same
rank a.e. If Sx(w) vanishes for w¢[-nmw, nw], then Sxy(w)
vanishes outside this interval as well; consequently,

~

be = SXy is consistent with any values for g(w) outside this
interval. Otherwise put, model (A) is not identifiable with
regpect to continuous data, let alone discrete data. Processes
of this type, whose spectral density matrix has for support a
proper, compact set of the allowable support (here, (-», ») for
real processes) are called band-limited. Their values x(t),
for all t, can be captured knowing only their values at x(ﬁ),
provided the spectrum is bounded.22 This result, bringing

to mind interpolation and the previous result, suggests a
closer examination.

The vanishing of Sx in an area says there is "no
action" in x attributable to that part of the spectrum (here,
the high-frequency components). A reasonable identifying
assumption for b(w) might therefore be for it to have "no
action" at these frequencies. We adopt this for the purposes

of the next proposition; now, with respect to the continuous

data,
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-1
. S. WS, (w) |w| <o
bw) = X Xy
0 |w| > nm.
Recalling (13b), SXB = Fn[Sx(-)b(-)], and noting that Fn
effectively causes no loss of information in this situation

because Sx(wl-21mk) and b(w+2mmk) both vanish for an integer

k different from zero, we have
Sx(w)b(w) |w| < nrm

|w| > nm and w = w*(Mod2m).
Sx(w*)g(w*) |w*|§_nﬂ

(19) s, WBW) =
Since

Sx(w) = Sx(w), Iw! < nmw

it follows that I;(W) is identified from the discrete data as

- {ﬁ(w) [w| < nrm
b(w) =

0 [W[ > nm

Again we have equality of g and E in a sense. To

translate this result into the time domain, we observe that

200 Bw) = Bwx_ P = BB (23

where the indicator or characteristic function X[é:]))] has been
previously defined. Obviously b(-)ek,(-=, =) if and only if
ﬁ(w)e!:z[-mr, nw], in which case we may take an inverse Fourier
transform. By adopting the hypotheses of Proposition 3 this

is ensured, and
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> g, v ('E)
(21) B(w) = & B(He
n
t=—c
holds for some Béﬁ)egq. The inverse Fourier transform of
ﬁ(w) is thus a row of delta functions with weights on the
lattice Ln given by B(E). Abusing the notation slightly by

referring to this generalized function as B(+), we use the

convolution rule on (20) to conclude

ry _ ® r _ _\5in sm - nor(l r
(22a) b(n) = f—wB(n S)_—EE_—~ ds n B(n) if a sLn.

If ﬁean, i.e., 1f r is not an integer, the first equality holds
and we may again derive b(ﬁ) from observable B(-), but the
relation is not so simple. We have §-= §-+ 8§, 0 < 8§ < %3 t
integer. Then B(ﬁ--s) = BC§+5—S) has its support located at s

values in the displaced lattice L n {6+§: t integer}. Con-

o
sequently
J=oo sin(6+1)nn
22) b& ="z BEd —— B
n e 1D (6+%)ﬂ

It remains to check that our candidate for (y(t)le),

blRx(t) = fw b(t-s8)x(s)ds,
—o0
makes sense. We are given pause by the fact that Proposition
1 is not likely to be applicable: for b(+) to be in El(—w, ),
g(w) must be continuous, and a glance at (20) shows this to be

unlikely. However, the matching condition can be verified

directly, since
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m’N - nw ~
S b'(w)Sx(w)b(w)dw = f B'(w)SX(w)B(w)dw <
-0 -nT

by Proposition 3 and using the first equality in (20). This

concludes the proof of

Proposition 5 If (a) the spectral characteristic g(w) is

chosen to vanish with Sx;24 (b) the continuous process X is

limited to the band B = [-nmw, n7]l; (¢) Sx(w) (=Sx(w) on B) is
essentially bounded below and either Al(w)eLZ[—nn, nr] or SX
is essentially bounded above; and (d) RXYE&Q; then the continuous
and discrete models (A) and (B) are both identified from the
discrete data by projection. Moreover, equations (22) provide
b(+) in terms of B(-).

In [3], Geweke shows, for the case n=l, an "inverse"

result for band-limited processes:

sin w(t-s)

7 Ct=8) *b(s)ds, t integer.

(23) B(t) =S

o
His interest in (23) is that each component of B involves only
the corresponding component of b--there is no contamination.
Our result shows that, when b(+) is identified by (a), the
integral equation (23), which holds only at integer t, inverts!
Even if our interest is not in the continuous model,
the last two propositions provide some clues about when a
"coarse" observational pattern will serve to identify a "less
coarse' model. Before taking this up, we will respond to the

challenge of remark (ii) as it pertains to model (C). It is



33
still only tacitly defined by equations (6) and (7); Proposi-
tions 2 and 3 do not directly apply to it. We explore this
question, and its relation to the other discrete models in

the next section.
V. The Identification of Model (C) and the Relations Among
the Discrete Models

One way to interpret (10), RXY(ﬁ) = RX*B(E), is as a
necessary and sufficient condition on B for B'*X(t) to be the
projection (Y(t)IHX), provided that B'*X(t) is well-defined.
Put differently, given a B by whatever means, if B'*X(t) can
be shown to be in HX’ then checking (10) is equivalent to
checking whether B'*X(t) is the projection. While (10)
referred to model (B), an analogous system of con&olution
equations holds for model (C). Our plan is to develop them,
solve them, and then apply the above considerations to Justify

our solution.

Let us recall the model (C) in the form using (6)':

N s=
(6)' Y(t) = T I B,(t- 29)x, (E)+U(r)
j=1 s=—w 4 By I'my

B, (t- 2y =0, &2 L s, r integer; j=1, ... N
o e

) EU(t)Xj(g—) =0, t, s integer, j=1, ... N.
h|

The following notation will be found useful. As

before, denote by Lj the lattice {ﬁ—: t integer} j=1, ...N.
h|

Recalling our assumption on the data structure, define the integers
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L T
= [;;] =

m s N>3j >1i>1; 1, j integer.
i!j - -

L.J? l‘.a.u

By H(S) will be meant the smallest Hilbert space containing
the set S. (This 1s the same concept mentioned in the proof
of Proposition 1 and footnote 1.) In this terminology, we
have: (i) the domain of Xj(v) is Lj; (11) the lattices are
nested, L1.2 L2 2...2 LN; (1i1) Bj(-) is defined on L1 but
may be nonzero only on Lj’ Lj+1’ oo LN. (iv)

N N
Hy = H(j:i(xj(S), sely)) E'H(j:i(xj(S) seLj)) = H.
c H( u (X (s), sel, )) = Hy = H C H( U (xj(s), 8 real))
j=1
= H,.

The models (A) to (D) are thus identified by projecting Y(t)

onto HA to HD, respectively, all of which may be regarded as

closed subspaces of H(x,y) = H(HAp(y(t), t real)). This
observation may clarify remarks (ii) and (iv) of Section III.
Multiplying both sides of (6)' by Xi(t— %—), taking
i
expectations, and making use of (7) yields :

N

(24) &)= IBx* G, i=1, ...N,
RXiY ng = 1 j RX X ng

where the jEE term in this sum is
=00

(25) B,* & = > B (t- —) E— - (t- ——)>,
i inxj 07 e J Is‘in ny ny



and the constraints may be written
(26) B,(s) = 0, seLile, N>3>1>1.
We will make use of the

Covariance Identification Lemma If u(+) and v(+) are two

stationary processes observed on the lattices Lm and Ln’
respectively, we may estimate consistently, and hence regard
as identifiable, Ruv(s), seLr, r the least common multiple of

_ ot
m and n. (Hn = {m' t integer})

Proof:

kn-h k h
D) = Eu(t- Dv(e- D),

by covariance stationarity, so that for any integers k and h,

1 k h, _ 2 kn-hm
TIT th u(t- m)v(t— w = Ruv( mn )

may be formed, where |T| is the number of points in T, a
finite set for which data on both terms in the product are
available. This estimator is certainly consistent. Choosing
h=0 (respectively k=0) shows Ruv(s), seLm (respectively
Ruv(s),lseLn) are identified. Clearly the set of points so
identified in arbitrarily large samples T is a lattice. The
precise description of the lattice gives its step, which is
evidently %53 with d the minimum positive integer equal to

kn-hm, where k and h vary over all integers. Since m and n

35
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have least common multiple r, nf = am = r with ¢ and B rela-

tively prime integers, and kn-hm = ié(ak-sh), we want the

least positive value of ok-Bh over all integers k and h. But
m

ok-Bh can always be made to equal 1, in which case d = §§ --E

= ﬁ; so that

1
3
N |

g—l——s
Bn

g

This last observation must be evident to all number theorists,
and its tedious induction proof is omitted. Q.E.D.

Applying this lemma to the convolution equation system
(24)--(26) shows that all of the terms RX Y and RX xj which

effectively enter may be taken as known. For while the

right~hand side of (25) contains all the terms RX X

j
seL » only when t- ——€Lj will such a term have a nonzero
n
coefficient, and it is in precisely that case that RX X is
i3

available, because the sum of the two lattice points
t- ——eLj and _IEL is a lattice point.

Solving this system--even "operationally"--appears to be
much more formidable than solving (10), where we were able to
Justify multiplying by Rx_l. If (24) were written in matrix
notation as RXY = RXX*B, we evidently have two choices for the
domain of the elements of RXX: it may be uniform %I~units
apart, in which case many components are unobservable; or, it

may be nonuniform, defined only at the frequencies which

effectively enter (25), in which case it is hard to imagine
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even the formal construction of Rx_l. In any event, the
constraints must also be dealt with. Finally, the
frequency with which the equality in (24) holds varies with
the component 1.

These difficulties can again be dealt with in the
frequency domain, with the aid of an entirely finite version
of the folding principle used in the previous section. Stated
in the form in which it will be used, with reference to the

underlying continuous processes suppressed, we have the

Finite Folding Lemma If the discrete processes X and Y have

autocorrelation function RXY(') which is in principle observable

ny times per period but is actually observed nj times per

period, nl/nj = my e then the observed cross-spectral density is
-

ml,j_l

Fnj;nl[SXY(')](w) = kzo SXY(w+21rnjk), a.e., we[O0, 2'n'nj],

where the densities are assumed to exist.25

Proof: For any integer r,

rm rm 2mn rm
r __ 1,3 2 SR 1,3y o 1 iw 1,7
n — RXY(n ) RXY( 5 ) = f e — SXY(w)dw
3 1 k| 1 0 1
m -1 rm
1,j 2mn 1,3
= 1 5 3 iw2ml) n) Sy Grb2mn k) do.
k=0

0

The finite sum may be taken inside the integral and the

{w—

exponential may be replaced by e nj. Q.E.D.
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Observe that the notation F [ ] () indicates both
nj;n1

domain and, range of the operation. When the domain is clear
from the context, as, say, in (30) where any fold is with
respect to [0, 2ﬂn1], the notation may be abbreviated to

Fn [ 1(*). Valuable use will be made of the relation,

k|

|=00

s
8 )ei(t— ;—Dw

(27) Bz_méj(t— HI 1 = Bj(w) = Bj(w+2ﬂnj)
e 13w
= L B (§~)e n ’
g=—00 | nj i
j=1, ...N,

which holds because of the constraint (26).

Finally, we Fourier transform (24) and consider the iEh

equation. The left-hand side is, by the Folding Lemma,

ml’i—l

(28) F_ s, ) = £ 8, _(w2mn k).
ngsng XY o XY 1

The folding here is relative to the cross—-spectrum we would

observe if the data on Xi were on the lattice Ll' There is

"true" folding relative to the observational pattern of model (B):

as long as we only observe X, on Li’ we cannot unfold. We

i
will see that the right-hand side, however, contains a

"pseudo-folding" for the terms j, 1 < j <i-1. The iEE

equation reads



39

1-1 95,17t
(29) F_ . IS, JdJw) = 1 z B, (w+2mn, k)S (w+27m, k)
ngsmy - XY j=1 k=0 17 XRy 1
N .
+ 3 B, (wWF_ . [s 1(w)
j=1 i ni,n1 Xin

Consider, for example, j=1. We have seen that (s) is
1*1

known for seg ,; consequently, S (w) is known for all
1 X.X —_

il

w, 0 <w< 2qm The j=1 term in (29) thus involves a

1°
(Bj—weighted) folding of what we know, as opposed to the

left-hand side which folds part of a cross-spectrum we can't
observe. This is the sense in which "pseudo-folding" is to be
taken, since now we show how this latter can be undone.

Since (29) is to hold for all w (or, because of
periodicity, for all w in [O, Znni]) we may substitute

w+2nr h, h=0, 1,2, ... n,-1 successively for w. These ng

i

equations with w now regarded as belonging to [0, 27] are
clearly equivalent to the original equation with w belonging
to the entire [0, 2nni] interval. By expanding in this way,
we can express the desired ﬁ vector as the solution of the
matrix equation system (30), displayed as p. 43 which will be
on occasion abbreviated by SXY(W) = SX;C(W)ﬁ(w).

We describe SX;C further, as its properties are of

crucial importance for the identification of model (C). It
N

is square, of dimension ( £ n
i=1 2

it is most easily visualized in terms of its N° blocks.

i), and Hermitian. As indicated

The (j, k) block is: diagonal, of dimension nj, if j=k;
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if j <k, it is njx o,

stacked vertically. The elements on the diagonal are the

consisting of mj‘k diagonal matrices
s

cross-spectral density F [s 1(w), as "truly" folded
nyotr X%

by the observational pattern. Although formally indicated

to show the general pattern, no folding occurs in the first

block-row or in the first block-column. Since all folding

is with respect to [O, 2wnl], an n, has been omitted from

n, [ 1(+) in (30). In winding diagonally down a stack only

“1

one period is traversed--there is never any repetition. The
width of the blocks diminishes with rightward movement. By
inspecting the n1+l§E row, the "pseudo-folding" is seen, in
that S (w) and S (w+2ﬂn ), which are individually

2 l 2 1
observable, occur together in thetﬁfl—— equation. Finally,
all elements of S__(*) and S are identified, or data-

4 XY X;C

determined, so that we might hope that

(31) B(w) = S¢ (W)S (w), we[0, 27]

holds and our indicated programme may be carried out. Before
continuing we make a slight digression in the next paragraph.
Since models (B) and (D) were seen as mathematically

special cases of model (C), the equations

(32) S..(w) B(w)ﬁf, we [0, 2r]; and

44

(33) S..(w) = sX;D(w)Ec, we [0, 27,

XY

are particularly instructive special cases of (30), in which
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the (j, k) block is always diagonal.26 The technique of
forming thg super-matrix SX;C is necessitated by the fact
that no orthogonal-increments representation of the subspace
HC we are projecting into exists, and creating one would be
more difficult than our direct solution. That SX;B and

SX;D actually yield the previous solutions derived on the
basis of spectral representations is a gratifying check on
the validity of the present technique.

The spirit of our inquiry involves making assumptions,
insofar as possible, on the continuous process (y, x) and
analyzing their implications for the discrete models. A
natural assumption, suggested by the logical requirement that
ls, x ] =5, (2% (12

1™ i 3

spectral density matrix have a dominant diagonal--the positive

s is that the (continuous)

diagonal element exceeding the sum of the modulii of the
off-diagonal eiements of that row. But from the folding
formulae (1la) and (11b) this property carries over to the
discrete model (B)-spectra defined on [-nT, nT] (or equivalently
[0, 2mn]: in the sequel we may use these interchangeably) ;
also, directly or by Finite Folding, to model (D). We have

only to consider model (C) to establish

Proposition 6 SX;B’ SX;C’ SX;D gre all positive definite, and

hence invertible, under the assumption that the continuous

spectral density matrix is pointwise dominant diagonal.
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Proof: The matrices are all Hermitian. Having written out
SX'C in (30), inspection shows that, upon unfolding the
typical diagonal element Fn o [SX ] (w) into SX (w)+SX

i1 i i i
(w+2mn )+...+S, (w+2mn, (m, .-1)), each term bounds the sum

i Xi iv1,1i

of the off-diagonal terms in the same frequency range. Conse-
quently, all the matrices are dominant diagonal, hence by
the well-known theorem, positive definite. Q.E.D.

Two remarks are in order: (i) the immediacy of this
result is illusory; rather, the power of (29) and the
felicitous substitution which led to (30) are reflected;

(ii) as satisfying as it is to derive a previous assumption,
this result by itself, we emphasize, is inadequate: ﬁ, ﬁf,
ﬁc may exist, but the nature of the implied inverse Fourier

transform needs to be checked. This we do in the very

important

Proposition 7 Any hypotheses on the continuous model which
validate model (B) under Proposition 3 also validate model ).

NxN
Specifically, when SX is essentially bounded below, and also

T,
@1 Al(w)dw < o,

-nm )
or (ii) SX is essentially bounded above, then these same

t

properties hold for SX;C' Consequently with RXY(EIQE&Q, it
follows that ﬁe&z in (30)27 so that: B has an inverse
Fourier transform in 22, B(ﬁ—), which satisfies the matching

1
condition; hence, B'*X(t) is well defined.
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NxN
Proof: Assume clIN < SX(w) < CZIN’ we[0, 27}, where of course
n=n,. We now seek to find similar bounds for SX'C’ we[0, 27].

To this end, the notation for a typical test vector x, for the

Rayleigh quotient is needed. Consider the layout:

[ \
]
*11\ [*12 1N X
: o |
X9y . . x',.
1 { . x }m X m
vector . ) 1,2 nNN 1.N
. . stacked . stacked||=
. vectors . vectors
1IN
“n, 2 X
X X
nl1 n22 X x'n,.
o Y
X1 %2 XN
X 2 XN
With the (nl+n2...+nN)x1 vector x = X 4 form the Rayleigh
X
XN

quotient XC'SX'C(W)XC’ which, upon close inspection, is revealed
b4

to be



45

x'k.SX(w+(k—1)2ﬂ)xk.

Consequently, using the assumption on SX( ), we have

n

1

2 n

e, llx ||g <e P x <x's, (Wx <c, Ix' x
LelE = "1, 20 % ke = Fe Pxset e = %2 2 %k k.

< oy I, 12

since

b

2
I xn, sy gl 113,

II IIE the Euclidean norm, and

n

2
5 1< 2 wm

Consequently,

(cl)xc'INxc 2 xc'SX;C(W)xc = (ciZml,l\ch'INxc’

so that SX'C(W) is also essentially bounded from above and below.
3

In case Sx(w) meets condition (i) instead, we note that the same

expansion for the quadratic form (or Rayleigh quotient) yields

the inequality

n
sup (XC'SX;C(W)XC) = Al;C(W)-i kEokl(w'-l-ZTr(k—l)),

Hx lg =1

where ) (w) is the largest eigenvalue of S and Al(.) has
1;cC X3C
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the same meaning as before. Both sides of this last inequality

are positive a.e., since SX’C is bounded from below by hypo-
. s
thesis. By squaring both sides and integrating over [0, 27],
2T

the fact that [ Ai_c(w)dw < o follows from hypothesis (i)

0 b
(with the trivial change of variable) and the Holder inequality
applied to the cross-product terms in the sum. (The equality

involving A (w) was also used in the proof of Proposition 2.)

1;C

Consequently, S is in EZ’ and since it is bounded from below,

X;C
its inverse exists, is bounded from above, and consequently is in
Ez as well. Finally, we indicate more explicitly than on pages

20-25 the finiteness of the matching condition:

27 e 27 -
S Ry ) "Ry GDR (Wdw < f R (W) oI Ry (Wdw
0 0

N
where I is of dimension I ni and ¢ is the constant in the
i=1
-1 ~"=1
upper bound for SX;C = RX . We used the fact that RXY( )€&2

implies %(Y(-)sgz. Q.E.D.

Our solution to (30) is now justified, and we have
unified the models (A) through (D) by producing reasonable
conditions under which they are all identified by projection.
Consequently we may proceed to study their relatiomnship by ‘
analyzing (31) (equivalently, (30)), (32), and (33).

On page 47, we display (32) in more detail. Of course,
the folding operators all have the same subscript. To see the

N

to 5 we introduce the ( I n,)x Nn, matrix
1=1 i 1

relationship of ﬁf

IC;B given by
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The block in the jth diagonal position consists of ml,j
identity matrices In . This matrix is distinguished by its
ability to premultiply the SXY(W) in (32) and yield the
SXY(W) in (30). 1In turn, the transformation of the resultant

matrix into the SXY in (33) is accomplished by premultiplication

N
by the Nx(iflni) matrix ID;C given by
T O ol O

o dno ot
O qu.. 1,0, O_
o1 O T

S 5“( “+aT

in which the th diagonal block consists of nj ones, We display

the coarse model more fully as



Model (D)
Note: As above, we take n,=n, and, to avoid repetition,

"factor" out Fn which is common to all terms.

33) /s, @) S, W) S, . (W ... S, w)\ [B,.
X, ¥ X, XX, X X 1;c

F S, o) |=F | S, . (w) S, (w) s, .« Il B, .

n X2Y n X2X1 X2 XZXN yH
S, o (w) Sy v W) Sy v () ... S. (W) B
XY X1 %2 Xy Nie

or, SXY(w) = SX;D(W)BC(W)
With this notation, and adding a subscript to SXY to
identify the model to which it pertains, we have

~ ~

TessSxvse ™ To;Sx;8Bs = Syyi;e = Sx,cB

and

IpscSxysc = Tpyc®r;c® = Sxv;p” Sxipie

Just as Proposition 7 proved properties about Sx-C
>

from assumptions about SX;B’ so could we prove that the same

properties follow for S under the same assumptions. In

X;:D
particular, one consequence of "essential boundedness above
and below" was invertibility. The above equations may thus be

rewritten, for we[0, 2m], and suppressing w which occurs as

the argument in all of these matrix functions, as

49
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~ -1 ~
(34) B = SX;C IC;BSX;BB = rX;CB Bf

and

~ - _l ~—~ .~
(35) Bc SX;D ID;CSX;CB rX;DC B.

Combining these equations suggests the definition for

Tp;s = Inscle;s 2™ Tx;ps = Tx;pe x;ca.
These entail

(36) B, = Tyipe B = Tyype Tx;crBs = Fx;pe e’
where of course,

*v;pB = Sx;0 Tp;ele;BSxse T Sx;p 0 Ingm Sxsm

The equations (34)-(36) express the relations among
the discrete models (B)~(D). They are, as perhaps might have .
been expected, similar to the result obtained in [3] and [10],

ﬁc = F [EX'E], which relates, in our terminology, models (A)

and (D), where ;x(w) = SX;D_l(w)Sx(W). Because multiplication
in the frequency domain corresponds to convolution in the time
domain, these equations are readily interpreted.

The general lack of identification of model (B)
(respectively, model (C)) from the observational pattern of
model (C) (respectively, model (D)) appears in the rectangular

dimensionality of
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N N
( Z n )xNn Nx( Z n,)
=1 1 i=1 T
rX;CB and rX;DC

Consequently, neither (34) nor (35) may be inverted if any
independent variable is observed more often then another. A
discussion of the precise nature of the underidentifiability
would follow the lines of p. 18-25. Results analogous to those
identifying b from B given in IV could now be given. For the
reader who has followed the argument to this stage, however,

to mention such results is almost to prove them.

We do call attention, nevertheless, to a special case
when the data are in the observation pattern of model (C) and
when the coefficients in model (B) are to be estimated. In
general, owing to nonzero nondiagonal elements in ;X;CB (the
discrete analogue of "contamination") (34) shows that this
cannot be done. However, for Xi’ the desired coefficients
ﬁi’f(w+2ﬂ(k—l)ni) are identified, and consequently estimable,

in the special case in which ng=n, and RXin(E") = 0 holds

for all integer t, and for all j different from the fixed i.

This can be seen directly from (30) in its expanded form. Of
course, it is the strength of these assumptions which allows

the achievement of more identification than we are otherwise

entitled to. As with the other such special cases, we

caution that a good deal of robustness is required for their
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practical application.
Finally, reflecting on the very plausible assumption
of the nested data sets of model (C), we remark on the effect

of its relaxation. If observations were available on Xi at
n

; times per period, (ni
i+1

integer) the least common multiple, r, say, would have been

now not necessarily an

the rate of n

formed. The appropriate "fine" model would then have had all
variables defined on the lattice Lr = {%3 t integer}. We
would then have proceeded in the same manner, with the only
difference being that the pattern in (30) would not be quite
so simple, although it would remain '"quasi-block-diagonal.”
The full generality of the Covariance Identification Lemma

would then have been required.

VI. Conclusion

Within. the framework of continuous time, jointly
.covariance stationary stochastic processes, conditions on a
continuous process were given under which the usual distributed
lag regressions were proved to be identified by projection
for very general classes of observation patterns. For
different observation patterns, different but related
distributed lags were identified in this manner.

The frequency domain was seen tovbe the natural habitét
for the study of the relationships among these projections,
despite the lack at times of a Cramer-type representation of

the sampled process. Propositions, meant to be interpreted
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as limiting cases, were advanced in which conditions that have
been studied elsewhere allowed fine distributed lags to be
identified from relatively coarse data structures. Emphasis
was placed on the development of an apparatus which is in
principle capable of analyzing the effects of temporal

aggregation on a case by case basis.
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Footnotes

1In [10], Sims uses the same method of identification.
As he notes, it is not the only route that can be taken:
projection on the past and present is also possible, but not
so tractable analytically. More accurately, the projection
is onto the space of values, Hx’ of the independent process.

The latter concept is rigorously defined in Rozanov [9], p. 3.
Briefly, it is the completion under the quadratic mean norm
of the linear space of random variables spanned by x(s8), s
real. As a general rule, the meaning that is understood by any
undefined symbols such as

(s}

) eitwdzx(w),

[o0]

the integral of a complex valued function with respect to a
random measure, may be found in this source (with ®(dA)
replacing dzx(w)) or Koopmans [6]. Since all future reference

to Rozanov will be to his book, [9], we will omit this reference
number in the sequel.

2For a rigorous definition of linear regularity, consult
Rozanov, p. 53 for the discrete case, p. 110 for the continuous
cage. In both cases the intuitive meaning is the same: the
best forecast of the "infinitely removed" future is the mean;
or, there are no deterministic components remaining in the
processes being studied. Linear regularity of x implies Sx

has constant rank a.e. We assume !Sx[ # 0 a.e., unless noted

in the sequel, which is consistent with linear regularity.
(Theorem 2.4, p. 115, Rozanov.)

3Unfortunately, there are several "standards," as
casual perusal of the sources cited in this paper shows.
Differences can often be resolved by checking whether R (s)
means Ex(t)y(t+s)' or Ex(t+s)y(t)', where y as well as
x may be a vector. (The symbol ' will always denote (complex)
conjugate transpose; ~ will denote Fourier transform.) In
the former case, the usual equality

T P\
ny(t) =/f e

-=00

t
sxy(x)dx

is maintained (when working with x and y real) by defining

dfr. (D) A =w
E z (ADdz (w) = Xy
X y 0 A # w;
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which contrasts with the latter (more common) definition of
ny(s), in which the right-hand side of the last expression is

not conjugated. Whichever definition we choose, we also have

1 i)t
2T f;mFXy(t)e

dt=Sxy(A)
when we assume that
1
ny(')EL (-°°: °°)
as well as that Sxy(x) exists. This follows from

lim1 T e~1(Me)e_ -1kt

- = —_— )
Ty T ) = 0 92 1 Ry (05—

dt, ([5], p. 41)

Dividing by € and passing to the limit, we get the desired
result by pulling the limit on ¢ inside the integral sign,
which is permissible by the Dominated Convergence Theorem and
uses the integrability of ny(-). Of course, all integrals

involving matrix-valued integrands are to be interpreted
component-wise. Finally, we note that a bounded function

(ley(-)| is bounded by [ny(O)]) in Ll(—m, ®) is also in

Lz(—w, ©) and that when ny(-)eLl(—m, ©), by the preceding
inversion formula, ISxy(-)] is bounded. Hence both ny(-)
and Sxy(-) are in Lz(-W, =), and may thus be regarded as

Fourier transform pairs under the classical unitary mapping
of this Hilbert space onto itself ([5], p. 513). Finally, we
will use the symbols Rx(-) and RXX(.) as well as Sx(-) and

Sxx(-) interchangeably.

4This tack was taken because of precedent ([3], [10])
and because it is a natural way to proceed.

5While Lighthill [7] is a standard reference which
gives a good "physical' motivation for this subject, he never
mentions the convolution of distributions. This topic is
crucial for our purposes, however, as we _wish to be able to
Fourier transform (3), say to SXy = Sxx-b for a wide variety

of ordinary and generalized Rxx(.) and b(+) functions. We

refer the interested reader to [13] or [14] for justification

of any underqualified use of such procedures. Briefly, ordinary
functions can be embedded in a suitable space of generalized
functions. The latter are defined so as always to permit
Fourier and inverse Fourier transformation. In this way,
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we can operate with ordinary functions which don't meet the
"classical" conditions for Fourier representations. For

example,

z eth = §(w),

t=—co

the Dirac delta function, where convergence of the infinite
series is dinterpreted in the distribution sense. Indeed, the
series doesn't converge in the '"classical" modes (pointwise,

L2(—w, o) , Césaro, etc.).

6A related way that generalized functions or distribu-
tions might enter is if we extended our considerations to
generalized random processes. Continuous time white noise is
an example; its correlation function is the Dirac delta
(generalized) function of the previous footnote.

7See any text on functional analysis for the technical
definition. One the author has found eminently readable is
Bachman and Narici [1], in which Theorem 10.8 assures that
projections always exist. .

8From an ldentification viewpoint, K the observational
frequency of y(t) is unimportant. Say Y(E) = y(%), t integer,

so that Y(¢) is y(-) sampled n times per period, instead of
once. Two cases now arise: 1) [ﬁﬂ = §3 some t, in which case

the previous analysis applies, because we are relating Y at
‘an integer to given set of independent variables, and,
because of stationarity, the relation is the same regardless

of the integer; and, ii) §-= [ﬁﬂ + %3 1 <j <n-1: now define

Yj(t) = y(t + %) and apply the previous analysis to Y, and the

X process.

9This model is also studied in Geweke [3], Ch. 8,
P. 347 by another method. As to identification, he explicitly
assumes that a certain frequency domain matrix is invertible;
we work with different frequency domain matrices, and go to
some length toprove identifiability from assumptions on the
underlying processes. The model in [3] is slightly more general.

10These statements must be hedged, since exogeneity
in the econometric sense has to date been studied .in discrete
time models with homogeneous data. Exogeneity of x w.r.t. y
would yield -a one-sided b(+) which would be spoiled by time
aggregation: Bjéc(') would be two-sided. - :

E]
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11To be explicit about the identification tacitly
made here, we have two relations involving Rx:

] nm iw@®) ny iw(ﬁ)
Rx(ﬁ) = f Sx(w)e ™ dw and Rx(ﬁ) = f Rx(w)e dw,
-nT -om

The first is the usual spectral decomposition, with elements
of S, in I}f—nﬂ, nn}. The second is the classical Fourier

X
transform L27&2 pair relation, with elements of RX in Lz[—nn, nw].

Since these elements will also be in Ll[—nﬂ, nT], we have two

Ll[—nw,~nﬂ] functions with the same Fourier coefficients.
Hence, Rx(w) = Sx(w) a.e., by the classical uniqueness theorem

for Ll[—nw, nn] functions.

12This is especially so if an abstract point of view
is taken toward (10), in which RX is viewed as an &Q—Operator
which is to take XQ vectors to &Q vectors. Thus stated, we
might seek conditions on Rx that it and its inverse have this

property. My conjecture is that essential boundedness is the
desired condition.

13We have had in mind the usual diagonalization. Choose
u, unitary, such that u'S_u = A. Then u'S —lu = A_l, and
\ X X
u'SX—lSX—l u = A-lA_l'. But A is real because SX is Hermitian,

so that taking traces, permuting u', and using uu' = I yields

1.1, . Yo
''= ¥ )A,”. Also, using the positive definite

X X gt

property of SX(SX > 0 for short) and of SX_I

-1 -1 -1 -1, -1
then (1) S S "> -IN, and (ii) SX SX '
1 -1 -2

X X
> SX_ ec -IN > e IN. (ii) follows from (i) and the result

that "A > B > 0, C > 0; C commutes with A and B implies AC > BC."
Facts (i) and (ii) may be found in Halmos [4], p. 167-8.

, 1f SX < c-IN,

14Recall that the artifice of the generalized function

b(t)=5a(t) allowed us to "sift" x(t-a) from S b(t-s)x(s)ds.

Had b(t) been the derivative of a delta function, x'(t-a) could
have been realized, if the x process were mean square
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differentiable. These b(*) "functions" may be thought of as
the inclusion of "ideal elements': 1limits of sequences {bn}

of ordinary functions bn(-) which become more concentrated

around ¢ as n increases [7]. 1In the discrete model there again

may be elements of HX which are "ideal" in the sense that they

are not representable as convolutions, but only as limits of
convolutions. It is unclear how the concept of generalized
function would be useful in describing these limiting elements.

15Most texts on time series treat this topic under the
heading "aliasing." To describe the use of the term "folding
operator," imagine the graph of a (symmetric) spectral-density
function, drawn on both sides of a piece of an (infinitely
long) piece of paper. Fold the paper, so as to make an
accordion, with pleats at nrk, k integer. Compress the
positive half of the accordion; and superimpose (add vertically)
to make the spectrum on [0, nw].

16Strictly speaking, since Sx and Sx differ on a

countable set, they are equal almost everywhere, and by the
usual identification of such matrix functions, were considered
to be the same matrix function all along.

17Technically, the elements of the perturbation matrix,
here, P(w) must be measurable.

18Again by footnote 16, there is no loss of generality
by forcing our perturbation matrices to be zero on any set of
measure zero, which is the effect of not allowing A to be in
NO;E-.
2 19 212
Of course SY may be observed, but since SY = SXIB] +SU
and nothing is known about SU’ SY provides no additional
information.

2015 [10] and [3], r (t) = Py—l*RX(t) and 7_(w)

= Sx-lsx(w) are defined. Under the "linear interpolation"
assumption on Rx’ in [10] it is shown that rX(t) = ro(t)
= 1-fuf ) |u] <12

0 lul > 1
the desirable properties of having its integral equal unity
and vanishing off an interval ({-1, 1]) around the origin.
In [3], the further desirable property of "no contamination,"
or, no confounding of different components of the b vector
in the B vector of (14), is proved under this assumption.

and it is emphasized that this filter has
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21Despite the notation we emphasize that B and b are
the primitive concepts here.

22We refer the reader to Rozanov, Theorem 2.4, p. 115
and Theorem 6.4, p. 27 for precise statements and proofs of
these results.

00
23f sintTn e—itwdt =¥ (w) is not straight-
e ET [-nw, nw]

forward without a handbook of definite integrals, since the

[se]

computation / sin twWncos tw dt is needed. Actually, the

0
0 w| > nr (-
integral equals 1/2 |w| = nmwhich isy except at
1 [-nm, nT]
w| < nan
sintTn

the endpoints. Of course, at t=0, ——Eﬁr—-is defined (by

continuity) as n.

24Spectral characteristics being S_-unique means that
two such elements, bl(w) and bz(w), are identified whenever

o)

~ ~ ~ _
f_oo(b1 b2) SX(b1 b2)dw 0.

Where S, vanishes, the equivalence class of such identified
elements is large. Hypothesis (a) tells us which element to
select.

25We depart slightly from tradition here by regarding
cross-spectra as defined on [O, 2ﬂnl] and [O, Zﬂni] rather than

ﬂni] because the limits in the finite

on [-Tm Wnl] and [-Tn

1’ i?
summations are more tractable. Of course since our functions
are of the required periodicity, they may be extended back to

the interval which is symmetric about the origin, if desired.

26The left-hand side vector SXY(W) is, respectively,
N .
of dimension nNxl, ( Z ni)xl, and Nx1 in equations (32), (30),
i=1

and (33), respectively. The meaning of the terms SX'B’ SX‘D’
-~ ~ 1 3
Bf, and Bc should be clear, but in any event is indicated
explicitly in the matrix displays.



The pedantic reader will note that the same symbol,
B is used in (30), where its domain is [0, 27] and it is

N
(Zn )xl and in (27), where its domain is [0, Zﬂn 1 and it

i=1

is Nx1. Not making this distinction, which causes no real
difficulty, reflects itself in the minor ambiguity regarding
the domain of Ez.
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