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this fact. In both variants, we assume agents make decisions on a continuous time basis.
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The evidence against these models is far from overwhelming. This suggests that the
martingale hypothesis may yet be a useful way to conceptualize the relationship between
aggregate quarterly U.S. consumption and income. According to the second variant of the
permanent income model, serial persistence in measured consumption reflects the effects
of exogenous technology shocks and time aggregation. In this model, continuous time
consumption does not behave like a martingale. We find little evidence against this
variant of the permanent income model. It is difficult, on the basis of aggregate quarterly
U.S. data, to convincingly distinguish between the different continuous time models
considered in the paper.
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~ 1. Imtroduction B

Few subjects in macroeconomics have received as much atiention as the relationship
between aggregate consumption and aggregate income. This attention reflects, at least in
part, the belief that an understanding of the structural determinants of aggregate
consumption is central to resolving many of the issues in business cycle theory. During the
past decade, much of the empirical literature on aggregate consumption has centered on
Hall’s (1978) demonstration that, under certain conditions, the permanent income
hypothesis (PIH) implies that consumption ought to be a martingale. Under the
martingale hypothesis (MH), no variable other than current consumption should help
predict future consumption.

In fact, a number of authors, including Flavin (1981) and Hayashi (1982), have
reported statistically significant correlations between the change in consumption and
lagged consumption and income. The response to these findings has generally fallen into
one of two categories. First, some researchers have attributed this "excess sensitivity" of
consumption to the presence of a substantial number of consumers who are liquidity
constrained. Under this view, the PIH is fundamentally flawed as a principle for organizing
the aggregate time series data. [See, for example, Hallland Mishkin (1982) and Zeldes
(1989).]

A second view of the empirical shortcomings of the MH is that they do not reflect the
failure of the PIH per se. Instead, they reflect the failure of the auxiliary assumptions
required to derive the MH from the PIH. This view underlies both intertemporal capital
. asset pricing models [for example, Hansen and Singleton (1982, 1983), Dunn and Singleton
(1986), Eichenbaum and Hansen (1989)] and real business cycle theories [for example,
Kydland and Prescott (1982), Long and Plosser (1983), Michener {1984)] that abstract
from liquidity constraints and other market imperfections which would prevent consumers
from optimally adjusting consumption to permanent income.

This paper pursues the second of these two views. We investigate whether two

perturbations of the versions of the PTH implemented by Hall (1978) and Flavin (1981) are



consistent with the quarterly aggregate U.S. consumption and output data. First, we
- replace the assumption that agents’ decision intervals match the data sampﬁng interval
with the assumption that agents make decisions at time intervals finer than that. Second,
we change the technology for producing consumption goods to one that no longer implies
the MH.

Our first modification is motivated by the results of Sims (1971), Geweke (1978),
Christiano (1984, 1985), and Marcet (1986), among others, which indicate that temporal
aggregation bias can induce spurious serial correlation and spurious Granger—causality
findings. In fact, much of the empirical evidence against different versions of the PIH
consists of findings that the first difference of aggregate consumption is serially correlated
and is Granger—caused by a variety of other variables. If agents make economic decisions
at intervals of time finer than the data sampling interval, then these serial correlation and
Granger—causality findings could be spurious in the sense that they reflect only the effects
of temporal aggregation bias.

We explore the implications of temporal aggregation bias for tests of the MH in
Section 2. In order fo do this, we formulate and test continuous time analogs of the
discrete time MHs considered by Hall (1978) and Flavin (1981). We find that, in sharp
contrast to the discrete time MH, our data set has surprisingly little evidence against the
continuous time MH. In our view, the evidence against the continuous time MH is
sufficiently weak to warrant the investigation of continuous time general equilibrium
models which embody this hypothesis. At the same time, our reservations about the
~ continuous time MH are sufficiently strong to warrant the investigation of models which
incorporate the PIH but do not imply that continuous time consumption is a martingale.

In Section 3 of the paper, we describe a continuous time stochastic growth model in
which output is produced using both labor and capital according to a Leontief-type
production function. As do Hansen (1987) and Sargent (1987), we interpret the PIH as an
implication of a simple version of the Brock—Mirman growth model. When the labor

requirement per unit of capital is nonstochastic and the subjective rate of time preference



equals the net marginal product of capital, our model implies that consumption obeys the
MH. When either of these conditions does not hold, however, consumption doeé not act
like a martingale.

In Section 4, we empirically implement different versions of this growth model using
techniques developed by Hansen and Sargent (1980) for estimating continuous time models
from discrete time data. This strategy allows us to directly address the possibility of
temporal aggregation bias and to explicitly account for the fact that consumption and
income d;ta are not point-in—time sampled. Our main finding is that none of the versions
of the model which we investigate is decisively rejected by the data. We also find,
however, that certain versions of the model which do not imply the continuous time MH do
perform marginally better than the version of the model which embodies the continuous
time MH.

In Section 5, we make some concluding remarks.

2. Evidence on the Discrete and Continuous Time Martingale Hypotheses
Above we suggeste& that the empirical shortcomings of the discrete time MH could, in
principle, be due to temporal aggregation bias. To test this conjecture, we examine the
empirical plausibility of the martingale version of the PIH under two alternative
assumptions regarding the timing of agents’ decisions. First, we assume that the decision
intervals of private agents coincide with the data sampling interval, and we investigate

whether quarterly consumption acts like a martingale. We refer to this as the discrete

 time_martingale hypothesis. Second, we suppose that agents’ decision intervals are finer
than the data sampling interval. For simplicity, we consider the limiting case in which
agents make decisions on a continuous time basis. Then the hypothesis of interest is
whether continuous time consumption acts like a martingale. We refer to this as the
continuous time martingale hypothesis. Both the discrete and continuous time MHs imply
restrictions on the time series properties of consumption which can be tested using the

generalized method of moments (GMM) procedures developed by Hanmsen ( 1982).



Consistent with previous studies, we find that the discrete time MH is strongly rejected by
the consumption data. The continuous time MH provides a better characterization of the

data, in the sense that our tests fail to reject it at conventional significance levels.

2.A. Tests of the Discrete Time MH
We begin with a formal definition of the discrete time MH.

Definition: The random variable x, Is said to satisfy the discrete time martingale
hypothesis (DTMH) if the level of %, is a martingale with deterministic, possibly

time—varying drift; that is,

(21 Exy  =x o+

where ft,'r is deterministic and is defined for integer values of t and for 7= 1, 2, ....
Thxdughout, E, denotes the time t conditional expectations operator. We assume that X,
is contained in the time t information set.

We include the drift term, ft,’r’ to accommodate the fact that per capita U.S.
consumption and output have displayed persistent growth over time. The structural model
we present in Section 3 implies that consumption, output, and the first difference of
consumption are rendered stationary when detrended by the common geometric growth

rate . We impose these growth restrictions as an assumption and set

(22) £ =T H-4N)/(1-9)IC,

where C° is a positive constant. Let ¢, denote time t consumption. Given (2.2), the

DTMH applied to C; implies that



23) B Hac =,

+1
where A denotes the first—difference operator.
Restriction (2.3) can be tested using the procedures discussed by Hansen (1982).

Define the function
(24) WG, ¢ Ac,) = ¢ tAc,~C.
To simplify notation, we write

(25)  %(C)=HC, ' Acy).

Relation (2.3) implies that Ef;lwt(co) = 0, so that E?/)t(Co)zit = 0 for all instruments
z;, contained in consumers’ common time t —1 information sets, L ;- In our empirical
work, we consider the instrument vectors

—4)° o,
P ] ¢—( )Y t_4] )

th = [1, ¢—(t—1)Act_1, ceey ¢—(t—4)Act_47 ¢—(t—1)§t_li .

(2.6)

zg = [1, ¢_(t—1)Act—1’ "y ¢—(t—4)A°t—4’

¢_(t—1)(ct_1"§'t_l)) A ¢—(t—4)(ct__4—;'t_4)] )

where E’t denotes gross output at time t. Under the assumption that ¢—tAct and z;, are
jointly stationary and ergodic, the GMM procedure described by Hansen (1982) can be
used to estimate the parameter C° and test the null hypotheses, Ezﬁt(Co)zit = 0 for
i=1,2.

To describe this procedure, we define the functions g;1.(C) = (1/T)E'¥___1'gbt(0)zit for
i=1,2. Our estimator of C°, éi’ is the argmin of giT(C)Wi'%giT(C) fori = 1, 2. Here
W.p is the sample covariance of ¢,(C,)z,,, where C, is the argmin of g{p(C)g;(C) for
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i=1,2 Then Jyp = g;p(C)Wingp(Cy) for i = 1, 2 is asymptotically distributed as a
chi-square random variable with eight degrees of freedom. We use these statistiés to test
relation (2.3).

In implementing this procedure, we used the following data set. Initially, we
measured total consumption, ¢, as the sum of total government consumption, cg, and
private consumption. The latter was measured as real expenditures on nondurable
consumption goods (c ) and services (cg) plus an estimate of the service flow from the
stock of consumer durables (cs d). All of these measures, except Cyq and Cgr WeTE taken
from the U.S. national income and product accounts (NIPA). We obtained an estimate of
Cod from the data base documented by Brayton and Mauskopf (1985). We measured ¢ o by
NIPA real government purchases of goods and services (g) minus real government
investment (i g). A measure of i g Was provided to us by John Musgrave of the U.S. Bureau
of Economic Analysis.! Gross output, y, was measured as real gross national product
(GNP) plus Csg- All series are quarterly, cover the period 1950.2-1985.3, and are
converted to per capita terms using a measure of total population that includes armed
forces overseas.? The value of ¢ used to construct the detrended data is exp(6), where § =
0.004568, the coefficient on time of the regression of log(c,) and log(grt) on a linear time
trend and a comstant, computed subject to the restriction that the growth rates of
consumption and output are equal.> We treat ¢ as a known constant, so sampling error in
estimating ¢ is ignored in the hypothesis tests reported below. |

Tests of (2.3) based on ¢ and ): are reported in Table I. (The entries there contain the
significance levels of our test statistics.) Table I reports results based on the instrument
vectors Zy4 and Zot- As a check on robustness, we report calculations based on three
sample periods. For all three periods and for both instrument vectors, the DTMH is
strongly rejected. As a further check on robustness, we also report results for alternative
measures of consumption and income used by other researchers. The columns marked

"cnd’ y d" report results for the consumption and income concepts used by Flavin (1981).

Herey d denotes per capita disposable income. The columns marked “cn a1 ¢, d" I€port



results for the consumption and income concepts used by Hall (1978). Following Flavin,
we detrended these measures of consumption and income using different, though éonstant,
geometric growth rates.* The results using these alternative data series confirm our strong
evidence against the DTMH since, with only two exceptions, we can reject this hypothesis

at the 5 per cent significance level or higher.

2.B. Tests of the Continuous Time MH
We now abandon the assumption that agents’ decision intervals coincide with the data
sampling interval. Instead, we assume that agents make decisions on a continuous time
basis. Throughout, we follow the convention of placing time indices of continuous time
random variables in parentheses.

We define the continuous time MH as follows.

Definition: The random variable x(t) is said to satisfy the continuous time martingale
hypothesis (CTMH) if and only if

(2.7) Ex(t+7) = x(t) + £(t, 7),

where 7 > 0 and f(t, 7) is a deterministic, possibly trivial, function of t. We assume that

x(t) is contained in the time t information set.
The continuous time analog to (2.2) is

28) £, 1) = ¢ TY(1-4T)/(1-9)IC°,

for integer values of t and for 7 > 0.

If c(t) satisfies the CTMH, then measured quarterly consumption will not obey the

DTMH. From the perspective of the continuous time model, measured consumption is the



time average of consumption over the discrete time sampling interval, which in our case
equals one quarter. It follows that measured Act is a weighted integral of innov:ations to
the underlying continuous time consumption process from the beginning of quarter t — 1 to
the end of quarter t. Since the quarter t — 1 innovations also appear in Act—l’ the CTMH
implies that Ac, and Ac, ; have nonzero covariance. In addition, Ac, ; and y, , ought
to be correlated because continuous time output will be correlated with previous
innovations to continuous time consumption and Vi is the average value of output during
quarter t —1. For these reasons, temporal aggregation can, in principle, account for the
rejection of the DTMH discussed above. Consequently, we test the orthogonmality
conditions implied by the CTMH as well its implications for the autocorrelation structure
of ¢_tAct. In this context, we exploit a slight generalization of results by Working (1960).

Suppose that consumption does not grow, so that ¢ = 1 and f(t, ) = 7C° in (2.8).
Also, let x(t) denote the time average of x(t), x(t) = j(l) x(t+7) dr. Working (1960)
established that, under these circumstances, the first difference of the time-averaged
random walk, Ax(t), has an autocorrelation coefficient of 0.25 at lag 1 and zero elsewhere.
Christiano and Marshall (1987) showed that, after rounding to three digits, this result is
also valid for ¢ *AX(t) when ¢ = exp(0.004568). Thus, the CTMH implies that $,(C°),
defined in (2.5), has mean zero and autocorrelation coefficients of p(l) = 0.25 and pg =0 at
lags 1 and 2, respectively. Here p? = E[z/)t(Co)1/)t __i(CO)]/E[zpt(Co)]2 fori = 1,2. Define

the function

(29)  Hy(py, ©) = [%,(C), %,(C),_4(0) - p %, (C)".

Under the CTMH, E, ,H,(p;, C°) = 0, which implies the set of unconditional moment
restrictions EHt(p‘l), C°) = 0. These can be exploited to estimate the parameters C° and

p(l) using Hansen’s (1982) GMM procedures. Define the function gp(py, C) =

(1/T)E$=1Ht(p1, C). Our estimator of (pcl’, c9), (;71, é), is defined uniquely by the

condition gm(p,, C) = 0. Let W, be a sample estimate of the spectral density matrix of
TV1 T
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Ht(;zl, é) evaluated at frequency zero.® Then our estimate of the variance—covariance
matrix of (py, C) is Dy Wop(Drp) ™, where Dy = [8gp/ ey, O)] evaluated at (p,, C).

Table II reports our point estimates and standard errors for Py Notice that for all
measures of consumption and all sample periods, the estimated value of Py is well within
one standard error of 0.25. We also used Hansen’s (1982) procedure to estimate pg- In mo
case can we reject, at the 5 per cent significance level, the null hypothesis that pg = 0.
Consequently, this set of tests provides virtually no evidence against the CTMH.

Next we tested the implication of the CTMH that ¢—tACt is uncorrelated with
elements of agents’ time t — 2 information sets; that is, Et_zzpt(Co) = 0. This conditional
moment restriction implies the set of unconditional moment restrictions E¢t(co);it = 0 for

all instruments z; contained in It-—z' In practice, Zq4 and Zo; Were specified as

G M (),

;lt =[1, ¢-(t—2)Act_2, v ¢_(t_4)Ac Yl

{4’ Vg -

(2.10)

P

-2 t4
29 = [1, s D, y, ..., 67 Jac, ,

¢_(t_2)(ct_ _5' t-—2)’ ey ¢—(t_4)(ct_4_;’t_4)]"

The null hypotheses Ezﬁt(Co);it = 0 for i = 1, 2 were tested using the GMM procedure
described above. Under our null hypotheses, the JT statistics are asymptotically
distributed as chi-square random variables with six degrees of freedom.

Significance levels of the computed test statistics appear in the "Lags 2—4" columns of
Table I. Three features of these results are worth noting. First, in only one case do the
significance levels in the "Lags 24" columns fail to exceed their counterparts in the "Lags
1-4" columns. Second, in only one case can we reject the null hypothesis that E'gbt(Co) ;11;
= 0 at the 1 per cent significance level. Third, in only one case can we reject the null
hypothesis that E';bt(Co) ;21; = 0 at the 5 per cent significance level. Overall, then, this

set of tests provides only weak evidence against the CTMH.



10

We conclude this section by reporting the results of testing a set of joint hypotheses:
{E1/1,G(C°);it = 0, pc1> = 0.25} fori = 1, 2. Each of these null hypotheses implies the set of
eight unconditional moment restrictions EZith(p‘{, C%) = 0, where Z, is the 8 x 2 block
diagonal matrix with first and second diagonal blocks given by ;it and 1, respectively. Our
estimator of the pa,ra,meters p(l) and C° was the argmin of g T(pl’ C)W;r_][:giT(pl, C), where
g(py C) = (1/T) + =1%5 t(pl’ C) and W, is a consistent estimate of the spectral
density of Z. th(pl’ Co) at frequency zero for i = 1, 2. In particular, W, iT is a sample
estimate of the spectral density at frequency zero of Z. Ht(pl’ C), where p,, C are the
argmin of ng(pl, C)ng(pl, C) fori.=1, 2. Then J, T = ng(pl, ) 1Tg1T(/’1’ C) for
i =1, 2 is asymptotically distributed as a chi-square random variable with six degrees of
freedom.

Significance levels of the test statistics are reported in Table III. Two important
results emerge here. First, we can never reject the null hypothesis that EZ2th(p§, c°)
= 0 at the 1 per cent significance level. Second, in only one case can we reject the null
hypothesis that EthHt(p(l), CO) = 0 at the 1 per cent significance level. This exception
occurs, however, when the data set (c, ;) is used over the sample period 1951.1-1985.3.
Here the significance level of the test statistic of the chi—square statistic is 0.008.

Viewed as a whole, our results reveal some evidence against the CTMH. But this
evidence is surprisingly weak and is comsistent with the view that the empirical

shortcomings of the DTMH are primarily due to the effects of temporal aggregation bias.

3. The Permanent Income Hypothesis: A General Equilibrinm Model
3.A. The Model
This section describes a continuous time general equilibrium model that nests, as a
special case, the CTMH. Throughout, we suppose that the time series on economy—wide
consumption, the stock of capital, work effort, and output correspond to the solution of an
optimal resource allocation problem which can be decentralized as a competitive

equilibrium.
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A representative consumer ranks alternative streams of consumption and leisure

according to this preference specification:

(3.1) Eoof exp(-rt){-0.5[c(t) — b(t)]% — a{t)h(t)} dt,

where r > 0 denotes the subjective rate of time preference; b(t), the consumer’s bliss point
for consumption at time t; ¢(t), consumption at time t; h(t), hours of work, or labor, effort
at time t; oft), the marginal disutility of work at time t; and Et’ the expectations operator
conditioned on the time t information set I(t). Throughout, we assume that b(t) and oft)
are deterministic, possibly trivial, functions of time.

An aggregate technology converts time t capital, k(t), and labor effort, h(t), into

consumption goods:

(32)  3(t) = min{ak(t), (t)h(6)} + e(t),

where ;r(t) denotes time t gross output and §> 0. We think of the variable e(t) as the
time t endowment of the consumption good. It can also be interpreted as an aggregate
shock to the production function which affects only the average productivity of labor and
capital. The variable ;S/ 7(t) represents the (possibly) stochastic labor requirement per unit
of capital. We can interpret this labor requirement in at least two ways. One is that labor
is required to maintain the capital stock, while the other is that labor is required to run it.

The economy-wide resource constraint is given by
(3.3) y(t) = c(t) + Dk(t) + 7k(t),

where 7 > 0 is the rate at which capital depreciates and D is the time derivative operator.
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Following Hansen (1987) and Sargent (1987), we do not impose a nonnegativity
constraint on the choice variables of the model. Imposing that constraint makes solving
the model analytically difficult, if not impossible. Instead, we follow Hansen (1987) in

imposing the requirement that®

@®

(34 E, { exp(~1t)k(t)? dt < w.

This condition emerges from viewing our infinite horizon ecomomy as the limit of a
sequence of finite horizon economies in which we impose the constraint that the terminal
capital stock is zero. [See Hansen and Sargent (1989).] Finally, in deriving the optimal
resource allocation problem,vfor convenience, we impose the restriction that capital and

labor are always fully utilized:

(3.5)  8k(t) = r{(t)h(t).

In Appendix A, we discuss conditions under which this restriction is nonbinding. Let § =

5 7 > 0, and define

(3.6)  H(t) = oft)d/(t).

Here H(t) is the utility cost of the labor required to make a unit of capital productive.
In displaying the solution to the planner’s problem, we find the following notation

convenient:

™

(3.7 xp(t) =4 f exp(—b'T)Etx(t+7') dr.
0
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Definition (3.7) applies to any random variable for which the indicated conditional
expectation exists. In Appendix B, we show that, for the class of e(t), b(t), and H(t)

processes we consider, the equilibrium laws of motion for Dk(t) and c(t) are given by

DK(t) = ~(8-1)k(t) + [e(t) - e, (1)] - (5-0)8 Ve (8) ~ [b(t) ~ b (5)]

(3.8) + (808 b (1) - E(£)/4,

o(t) = (26-0)k(t) + (26-1)67 e (t) + [b(t) ~ b (t)] - (648 b, (t) + H(t)/5

when r < 26. When 1 > 2§, there does not exist an equilibrium for which (3.4) is satisfied.

Relations (3.8) imply that investment is an increasing function of the difference
between the current endowment, e(t), and the weighted sum of current and expected future
values of the endowment, ep(t). Notice also that, other things equal, investment decreases
when the current utility of consumption is high, that is, b(t) > bp(t). In addition,
investment depends negatively on H p(1:), reflecting the utility cost of the labor input
needed to make additions to the capital stock productive in the future. The impact of the
remaining terms in (3.8) on Dk(t) depends on the relative magnitude of the net marginal
productivity of capital, §, and the planner’s discount factor, r. These terms equal zero if
b=r1.

Relations (3.8) also imply that c(t) depends positively on the stock of capital, on
ep(t), and on the value of b(t) relative to b p(1;). In addition, ¢(t) depends positively on
Hp(t). This is because a high value of Hp(t) signifies a low opportunity cost of consuming
goods at time t as opposed to combining them with labor in order to produce future
consumption goods. The impact of the remaining terms in (3.8) on c(t) depends on the
relative magnitudes of § and r. These terms equal zero when § = 1.

We now determine conditions under which our model implies the CTMH. Let uxp(t)
denote the change in the value of xp(t) due to a disturbance in x(t) that is unpredictable

on the basis of x(t—7) for all 7> 0. Equations (3.8) then imply that
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(39) D= (-Ble(t) = (2-1/ Ok, () -y (O] + g (8)/6
+ Db(t) + (5)b(t) — H(t).

[See Appendix B for a more careful characterization of ,uxp(t) and a derivation of (3.9).]
Since b(t) is by assumption deterministic, the level of continuous time consumption will
satisfy the CTMH if and only if H(t) is deterministic and § = r. Since oft) is by
assumption deterministic, we conclude that c(t) satisfies the CTMH only if the time t labor
requirement per unit of capital, ;5/ 7(t), is deterministic. Under these conditions, relations
(3.8) imply the consumption rule, c(t) = &k(t) + ep(t) + b(t) - bp(t) + Hp(t)/ 6. When
H(t) = 0 for all t and ¢ = 1, so that b(t) - bp(t) £ 0, this reduces to the standard
consumption rule discussed in the PIH literature [Hayashi (1982), eqn. (1); Sargent (1987),
Chap. 12, eqn. (12)].

It is useful to compare our derivation of the MH with Hall’s (1978). Both analyses
make assumptions which have the implication that the real rate of interest, denominated in
terms of some observablé. commodity, is deterministic. In particular, Hall assumes that the
one—period-ahead risk—free interest rate, Rt’ denominated in units of the consumption
good, is constant. In our model, this interest rate is stochastic, even in those circumstances
in which the CTMH is satisfied. At the same time, our model implies that the risk—free
interest rate, denominated in units of labor, is deterministic, regardiess of whether the
CTMH holds.

To show that in our model Rt is stochastic, we combine the intertemporal Euler
equations for one—period capital investment and for risk—free consumption loans. The
latter is simply given by b(t) —c(t) = exp(-r)R,E;[b(t+1) - c(t+1)]. The capital
investment Euler equation can be deduced by analyzing the following variation from the
optimal consumption plan. At time t, the representative consumer reduces consumption
and invests the proceeds in capital for one period. At time t + 1, the net product from this

investment is consumed. The marginal cost, in utility terms, of this variation is b(t) - c(t)
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+ E,J (1) exp[(é-x)7]H(t+7) dr. The first term is the marginal utility of consumption at
time t, while the second is the utility cost of the additional amount of labor reéuired to
make the increment in capital productive. The marginal benefit of this variation is
exp(6-1)Ey[b(t+1) — c(t+1)]. This is the discounted, expected marginal utility of the
increase in consumption at t + 1 made possible by the expansion of the capital stock.
Along an interior optimum, these costs and benefits must be equal. Combining the

resulting expression with the Euler equation for risk—free consumption loans, we obtain

(3.10) R, = exp () .
b1+ B{JY expl(6n)T]H(t+7) dr}/[b(t) — coft)]

In our model, c¢(t) is a random variable as long as e(t) is. It follows that R, will be
stochastic even if H(t) is deterministic, as long as e(t) is stochastic.

Thus, a constant risk—free real interest rate, denominated in units of the consumption
good, is not a necessary condition for the MH to hold. In contrast, the risk—free interest
rate, denominated in units of labor, is given by exp(r)a(t)/o(t+1). Given our assumptions
on oft), this interest rate is deterministic. |

The remainder of Section 3.A derives restrictions on the parameters of the model
which guarantee that it has sensible asymptotic behavior. By sensible we mean that (i) the
time zero conditional means of c(t) and k(t) converge to paths which are strictly positive
and (ii) the time zero conditional mean of c(t) converges to a path which is strictly less
than the time zero conditional mean of the bliss point b(t). Given the linearity of our
model, we can examine this problem abstracting from uncertainty.

The deterministic analogs of the laws of motion of e(t), b(t), and H(t) described in
Sections 3.B and 3.C below are

(3.11)  e(t) =e x exp(ft), b(t) =b x exp(6t), H(t) = H = exp(6t),
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wheree, b > 0; Hye < b; #> 0; and r — 20 > 0. The last restriction on r and 8, together
with (3.8), implies that § > 4. Relations (3.8) and (3.11) imply that the equilibrium laws

of motion for k(t) and c(t) are given by

i(0)expl (r-0)t] + —2=WEED = B rongy _explet)i]) (0 # 1-9)

) = (5-8)(Fx+0)
- |[x(0) —Bt/(6-0) Jexp(8t) (6=1-9)
(3.12)
b« exp(tt) + (26-)k(O)expl(r-8)t] -~y exp(®)
oft) = | + (2Bl “ B oo (x gy (0 # x-9
[{(26-1)[k(0) + (e-Ht)/(&0)] + H/(6—6)}exp( 0t) (8 = r-6).

Here k(0) is the initial capital stock.

From (3.12), we can see that our criteria for sensible asymptotic behavior are satisfied
only when r — § < 4. If this condition does not hold, then two things are possible,
depénding on the relative magnitude of k(0) and x = b — e + H/(r—6-6) > 0. I k(0) > &,
then c(t) eventually exceeds the bliss point; if k(0) < &, then c(t) eventually becomes
negative. Suppose that r—§= 4. Then k(t) and c(t) converge to a strictly positive growth
path if and only if H=0. In addition, c(t) converges to a path strictly below the bliss
point as long as b > (26-1)[k(0) + e/(6-f)]. Finally, suppose that r — 6 < 4. Here c(t)
converges to a path which is strictly positive if and only if H/(#-r+6) < b and is strictly
less than the bliss point if and only if 0 < H/(6-1+6). In addition, to guarantee that k(t)
converges to a strictly positive growth path, we require that H/(#1+6) < b —e.

To summarize, the only two cases that are consistent with our criteria for sensible

asymptotic behavior are
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(313) r—6< 6 and 0<'y%<b—e
and

(314) 1-6=0, H=0, and b > (261)[k(0) + e/(5-0)].

Notice that, when H = 0, equations (3.14) imply that the model has sensible
asymptotic properties only in the knife-edge case, r — § = 6. If § = 0, this requires that r
= 6. Indeed, this restriction, or its discrete time analog, is typically imposed in capital
accumulation models of this sort [for example, Hansen (1987) and Sargent (1987)]. This
restriction is also the analog to the one imposed by Flavin (1981) and Hayashi (1982), who
require that the constant real interest rate equal fhe representative agent’s subjective rate
of time preference.

Relations (3.13) imply that, when H > 0, the model does not have this knife-edge
property. For éxample, in this case, § can exceed r. To see why, suppose that # = 0. Then
the nonstochastic steady-state level of consumption is b—H/(6-r). Evidently, if H = 0,
consumption simply converges to the bliss point. When H > 0, however, the labor required
to make the capital stéck productive has disutility associated with it. This disutility
reduces the optimal steady-state capital below the level needed to sustain steady-state
consumption at the bliss point. Similarly, with H and 6 greater than zero, the model can

accommodate values of §less than r.

3.B. The Deterministic Labor Requirement Model

Now we describe a parameterization of the model in which H(t) is nonstochastic. Asa
special case, when r = §, continuous time consumption satisfies the MH. We call this the
deterministic labor requirement (DLR) model.

Our parameterization of the underlying forcing variables in the economy implies that
consumption and output grow at the same geometric rate over time. While this
parameterization is very restrictive, it does have an important compensating advantage: it

implies that our model applies to consumption and output data which have been detrended
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with a procedure that assumes a common geometric trend. This allows us to accommodate
growth in an internally consistent way while preserving the applicability of ‘a. set of
econometric tools developed for nongrowing time series.

We suppose that b(t) is nonstochastic and satisfies (3.11). Since the level of
continuous time consumption satisfies the MH if and only if H(t) is nonstochastic, we
suppose that H(t) is nonstochastic and also satisfies (3.11).

The shock to endowment income is assumed to satisfy

(3.15) e(t) = el(t) + ez(t),
where

77i( t)
(3.16) Dei(t) = ei x exp(6‘t) + —ai-—_l:—]j,

where a, > 0 fori = 1,2 and a; # a,. Let x(t) = [n,(t)ny(t)]". The vector x(t) is the

continuous time linear least squares innovation to the joint [el(t)e2(t)] process and satisfies
(3.17)  E[x(t)x(t-u)]’ = exp(26t)¢(u)V

for all real values of u. Here ¢(u) is the Dirac delta generalized function and Vis a 2 x 2
positive definite symmetric matrix of constants. Thus, e(t) is the sum of two stochastic
processes with first derivatives that are AR(1) continuous time stochastic processes. The
reason for assuming that the endowment process is the sum of two stochastic processes, the
realizations of which are separately observed by agents, is to guarantee that the observed
bivariate consumption and income process is of full spectral rank.

Define y(t) as net output; that is, y(t) = ;r(t) ~ 7k(t). According to our specification,
all deterministic terms and innovation standard deviations grow at the same rate ¢. Thus,
not surprisingly, we can detrend c(t) and c(t) — y(t) by ¢t to obtain a stationary stochastic

process. Define
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(318)  q(t) = [c(t) - ¥(t), (D+O)e(t)]",

*
where z(t) = c(t)exp(—ft) and y(t) = y(t)exp(-6t). In deriving the reduced—form

*
representation for q(t), note that relations (3.8) and our definition of y(t) imply that

(319) [0~ (@-e(t) - ¥()] = 257 De (1) - De(t) - 23T v (1)

+ Db(t) + DH(t).

*
It follows from (3.9), (3.16), and (3.19) that q(t) has the continuous time, scalar,

autoregressive vector moving average (SARMA) representation

(320) D~ (s-0-8)]a(t) = B(D+OX(E) + T,,

where
B(D) = [b;(D)] G,i=1,2)
by;(D) = {(5-)(a+8) + (26-1)D}/{(261)(a;+D)) (=1,2)
(321)  by(D)=D (i=1,2)

X(t) = [(26-5)6 "0y (4)/(a+0), (26-1)6 Lny(t)/(ag+ )]

EIX()X(t-u)]* = £u)V,,

In (3.20), T, is a two—dimensional vector of constants and V. is a 2 x 2 positive definite
symmetric matrix of constants.

Notice that, when § = r, nondetrended consumption satisfies the MH. Detrended
consumption does not, though, since relations (3.20) and (3.21) imply that, when § = r,

*
c(t) will have a nonzero continuous time autoregressive root equal to 6.
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3.C. The Stochastic Labor Requirement Model

Now we describe a parameterization of the model in which the labor requireinent per
unit of capital, 7(t), is stochastic, so that the CTMH does not hold even when § = 1. We
call this the stochastic labor requirement (SLR) model.

Our specification of b(t) and oft) is the same as above. Now, however, we assume

that H(t) is a continuous time AR(1) random variable with time-varying drift:

(3.22)  H(t) = H x exp(t) + €(t)/(i+D),

where f > 0, E[e(t)e(t-u)] = exp(26)¢(u)o%, and o> > 0. Since H, = 6a(t)/7(t), relation

(3.22) implies that the labor requirement per unit of capital is stochastic.

The shock to endowment income, e(t), is assumed to satisfy
(323)  De(t) = e = exp(ft) + n(t)/(a+D),

where E[n(t)n(t-u)] = exp(20t)§(u)orf’ and afi > 0. Let x(t) = [e(t)n(t)]’. The vector x(t)
is the continuous time linear least squares innovation to the joint [H(t)De(t)] process and

satisfies
(324)  E[x(t)x(t-v)]’ = exp(26t)£(w)V,

where V is a 2 x 2 positive definite symmetric matrix of constants.
*
Relations (3.9) and (3.22)—(3.24) imply that [D — (r—#-6)]q(t) has the continuous time
SARMA representation

(325)  [D-(=-6-9)a(t) = B(D+OX(t) + T,

where

Bc(D) = [bij(D)] (,j=1,2)
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b,;(D) = [(6-x)(a+6) + (26-r)D]/(a+D)
b,o(D) = D/(f+D)

b,,(D) = (26-r)D

(3.26)
byo(D) = D(D-4)/(£+D)

X(t) = [ n(t)/(a+9), e(t)/(E+)]"
E[X(t)X(t-u))* = ¢(u)V,

In (3.25), T is a two-dimensional vector of positive constants, and in (3.26), V is22x 2
dimensional positive definite symmetric matrix of constants. Relations (3.25) and (3.26)
imply that, unlike the DLR model described in Section 3.B, here c(t) does not satisfy the
CTMH even when § =r.

4. Empirical Tests of the Structural Continuous Time Models
In this section, we estimate and test our two continuous time structural models. First

we discuss our empirical methodology, and then we report our empirical results.

4.A. The Estimation Strategy

In Section 3, we derived the constrained continuous time SARMA representations for
the vector ;(t) implied by our two continuous time models. [See (3.20)—(3.21) and
(3.25)—(3.26).] To proceed with estimation, we must deduce the implications of these
SARMA representations for the probability law of the vector of observable variables.

While a(t) is defined in terms of detrended consumption and net output, we actually
estimated our model using data on gross output. This decision was based on two
considerations. One is that the data on aggregate depreciation is not particularly reliable.
The other is that our model of depreciation is not likely to be consistent with the model of

depreciation used by the U.S. Department of Commerce.



22

Because of our decision to use GNP rather than net national product (NNP) data in
our empirical work, we must derive the implications for the analog to a(t) defined in terms
of detrended consumption and gross output. Define <~1(t) to be the 2 x 1 continuous time
stochastic process which has as its first element the difference between detrended quarterly
averaged consumption and gross output and its second element the detrended first
difference of averaged consumption. The vectors Z(t) and c-l(t) differ in two important
respects.  First, ?i(t) involves a measure of detrended NNP, whereas <~1(t) involves a
measure of detrended GNP. Second, a(t) represents point—in-time measured variables,
whereas <~1(t) represents variables averaged over the discrete data sampling interval.

* -~
In Appendix C, we derive the following linear mapping between q(t) and q(t):

1)  q(t) = H(D+6)GD+0)" q(t),

where
1 0
(42)  G(D)=[1-"2|/D

+7

0 (l-e_D)/D} and H(D)=

0
]/(D+w).

Substituting (4.1) and (4.2) into (3.20) and (3.25), we obtain the time series
representations for (-1(t) implied by the two versions of our model.

The assumptions we have imposed on the structural parameters of the model are
sufficient to guarantee that <~1(t) is a covariance stationary stochastic process with

conditionally homoscedastic disturbances. Define
(4.3) Q(t) = q(t) - Eq(t).

Suppose we have a sample on Q(t) for t = 1,2, ..., T. Our estimation criterion is the
frequency domain approximation to the Gaussian density function suggested by Durbin
(1961), Hannan (1970), and Hansen and Sargent (1980). This criterion requires that we

compute the theoretical spectral density matrix of the discrete process {Q(t), t integer} at
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frequency w, which we denote Z(w). We accomplish this in two steps. First, using results
in Phillips (1958), it can be shown that the spectral density matrix of {Q(t), t real}
implied by the model of Section 3.B and equations (3.20) and (4.1) is given by

(44) %) = Yiw+OA (wt6) 7 VA (w+0) T iw+o)

for —w ¢ w < o, where ¥(s) = G(s)H(s)_1 and A (s) = [s - (=-6)|B C(s)"l. The corresponding

spectral density implied by the model of Section 3.C is
45)  Z%w) = YiwtOA (w0 VA (iw+0) T yiwto),

where A (s) = [s - (r-6)]B c(s)_l. Second, Hannan (1970, p. 45) shows that the following
"folding operator" links Z(w) and Z%(w):

®

wh
(4.6) Z(w) = )_, 7w + 27k).

——wm

Equation (4.6) together with (4.4) or (4.5) provides a computationally feasible algorithm
for obtaining Z(w), for a given w, from [, A . Vc] or [9, A, Vc]. Because this algorithm is
relatively slow, we used an alternative method based on a partial fractions decomposition
of Z° [See Durbin (1961); Hannan (1970), pp. 405—407; and Hansen and Sargent (1980).]
The preceding strategy assumes that the values of ¢ = exp(f) and E:;(t) are known.”
By assumption, § > r —4§. Thus, c(t) and y(t) have asymptotic growth rates equal to ¢. In
practice, we fixed the value of ¢ at exp(0.004568). (See Section 2.A for a description of the
growth properties of our measures of consumption and output.) Given ¢, we formed time
series on <~1(t) and Q(t). The first series was calculated using the measure of consumption
denoted by c and ;r described in Section 2. The second series was computed using the

demeaned values of (i(t). Throughout, we fixed the value of the parameter r at 0.0098,
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which implies an annual rate of time preference of 4 per cent. Consequently, the free
parameters of the model of Section 3.B are 3y, 3, 4, d, and the three independent élements
of Vo while the free parameters of the model of Section 3.C are a, {, §, d, and the three
independent élements of V ¢

An implication of the results in Christiano and Marshall (1987) is that both of our
models give rise to constrained SARMA(4,5) representations for {Q(t), t integer}. This
SARMA is characterized by a fourth-order scalar polynomial E(L), a 2 x 2-order matrix
polynomial C(L), and a 2 x 2 positive semidefinite matrix v4 which must satisfy

@7 Z(w) = O Vi) [EEYEEY).

We imposed the normalization C(0) = I, det[C(z)] = 0 implies |z]| > 1, and E(0) = 1. The

algorithm we used to calculate E, C, and Vd

I, Sec. 10.

is the one described by Rozanov (1967), Chap.

4.B. The Results

In this section, we report the results of estimating four versions of our model. These
specifications are the DLR and SLR models, both with and without imposing the constraint
- that § = r. Our estimates for the two versions of the DLR model and the SLR model are
displayed in Table IV.

Both the DLR and SLR models imply reasonable asymptotic behavior for the stock of
capital and consumption only when conditions (3.13) or (3.14) hold. Without these
constraints, the constants in our model are not identified. However, restrictions (3.13) and
(3.14), in conjunction with our point estimates and the assumed value of r, imply that H >
0. To see this, suppose first that H = 0. Then equations (3.14) require that
6=r1—0=0.005232. Our point estimates of § are 0.0088 and 0.0078 in the DLR and SLR
models, respectively, with corresponding standard errors of 0.0015 and 0.0007. This means

that if we insist on assuming that H = 0 and r = 0.0098, then the estimated models have
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the perverse implication that consumption fluctuates about the bliss point. Now suppose
that H > 0. Restrictions (3.13) require that &> 0.005232, which is easily satisfied by both
models.

We now assess the overall empirical performance of these models. The most
parsimoniously parameterized unconstrained model which nests our four structural models
is a SARMA(3,4).% Let Jp denote twice the difference between the maximized log
likelihoods for the unconstrained and the constrained SARMA specifications. Then JT is
asymptotically distributed as a chi-square random variable with degrees of freedom equal
to the number of restrictions imposed in the constrained specification. Without constraints
on 6, there are 16 degrees of freedom; with § constrained to equal r, there are 15. The Ip
statistic can be multiplied by an adjustment factor suggested by Whittle (1953), Lissitz
(1972), and Sims (1980) that is designed to correct for small sample bias. We denote this
adjusted test statistic by J;.Q

According to the values of J T and J ,;. displayed in Table IV, all four models perform
fairly well. First, the adjusted likelihood raiio statistics fail to reject any of the four
models at the 5 per cent marginal significance level. In fact, neither of the SLR models can
be rejected at even the 10 per cent significance level. Second, according to the unadjusted
likelihood ratio statistics, neither of the SLR models or the constrained DLR model can be
rejected at the 5 per cent significance level.

The large number of parameters in the unconstrained SARMA(3,4) representation
raises questions about the power of the specification tests. We can construct a more
powerful test of the constrained DLR and SLR models because both are nested within an
unconstrained SARMA(2,3) specification. (Against this alternative, there are 11 degrees of
freedom.) Not surprisingly, when we do this, we find more evidence against both models.
As reported in Table IV, both the unadjusted and adjusted likelihood ratio statistics imply
that both versions of the DLR and SLR models can be rejected at the 5 per cent
significance level, but not at the 1 per cent level. Although the unconstrained models are

not nested in the SARMA(2,3) specification, for completeness we did similar calculations
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for these models. (With § unconstrained, there are 10 degrees of freedom.) Table IV
includes the results of these calculations. | |

Overall, our goodness—of-fit tests do not yield overwhelming evidence against any of
the structural models. As an additional diagnostic, we examine the implications of the
different models for a vector autoregressive representation (VAR) of the data. Column (1)
of Table V reports an unconstrained VAR(2), estimated by least squares. We report a
second-order VAR because a likelihood ratio test failed to reject, at even a 10 per cent
significance level, that the third lag is zero. The VARs implied by our structural models
are reported in columns (2)'—(5) of Table V. In principle, all of these VARs are infinite
ordered. We use the truncation rule of not reporting matrix coefficients which have a
maximal element smaller than 0.03 in absolute value.

Consider first the VAR generated by the constrained DLR model [column (2)]. While
this mddel implies that the level of consumption satisfies the CTMH, it does not imply
that actual measured consumption is uncorrelated with lagged values of consumption or
output. In Section 2, we found very strong evidence against the DTMH, but relatively
little evidence against the CTMH. The results in Table V suggest that the effect of
temporal aggregation discussed by Working (1960) is the major factor accounting for the
reasonably good performance of the constrained DLR model. To see this, notice first that
the (2,2) element of the coefficient matrix on the first lag of the constrained VAR (which is
the coefficient on the own first lag of ¢_tAct) is approximately 0.27. This is within one
standard error of the point estimate (0.313) of the corresponding coefficient in the
- unconstrained VAR. Moreover, this point estimate is more than three standard errors
away from zero. In a model which implied the DTMH, this coefficient would equal zero.

To complete our argument, notice that the nonzero values of the coefficients on lagged
values of qf"t(ct - ;rt) in the second row of the VAR implied by the constrained DLR model
also reflect the effects of time averaging. However, this effect is harmful with respect to
the overall fit of the constrained DLR model. This is because the sign on q&“t(ct_1 ~¥iq)

in the equation for ¢—tAct is positive in the constrained VAR, while it is negative in the
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unconstrained VAR. Since the latter coefficient is not precisely estimated, this effect is not
sufficiently important to negate the favorable impact of the effects suggested by.Working
(1960). |

Finally, note that the VARs in columns (3)—(5) are very similar to the one in column
(2). This is consistent with the evidence in Table IV according to which the likelihood

values of all the structural models are quite similar.

5. Concludin,g Remarks

In this paper, we developed and tested simple variants of the PTH model which are
consistent with the fact that measured aggregate U.S. consumption does not behave like a
martingale. We investigated a variety of reasons why lagged consumption and output help
predict the change in measured aggregate quarterly U.S. consumption. Two reasons
received particular attention. One is that the MH holds in the (unobserved) continuous
time consumption process, with serial persistence in measured consumption being an
artifact of temporal aggregation. Using atheoretical econometric methods, we found much
less evidence against the CTMH than against the DTMH. We followéd up on this by
estimating and testing a particular continuous time general equilibrium model which nests
the CTMH as a special case. The evidence against this model is far from overwhelming.
This suggests that the MH may yet be a useful way to conceptualize the relation between
aggregate quarterly U.S. consumption and output. The other reason we focused on is that
exogenous shocks to the economic system generate serial persistence in the first difference
of consumption. Using a simple continuous time general equilibrium setup, we modeled
this shock as a stochastic perturbation to the amount of labor required to make capital
productive. Again, we found little evidence against this model.

On the basis of aggregate quarterly U.S. consumption and output data, convincingly
distinguishing between the different continuous time models we considered is difficult.
However, the continuous time martingale model does have implications which we did not

test, but which call into question its plausibility. One such implication is that the
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capital/labor ratio is deterministic. This implication is clearly counterfactual. While this
problem could be remedied by allowing for measurement error, we regard our sfochastic
labor requirement model as a more promising starting point for future research.

Throughout, we restricted our empirical work to aggregate consumption data that are
measured quarterly. This is the frequency of data used in most studies of the PIH [for
example, Hall (1978) and Flavin (1981)]. In addition, we implemented our structural
models using data on GNP. While a variety of measures of consumption are available
monthly, GNP data are not. In principle, this difficulty could be circumvented by deriving
the likelihood function for monthly consumption and quarterly GNP data. However, an
important maintained assumption of our structural models is that measured consumption
and output have the same growth rate. Our measure of consumption is not available
monthly, and existing monthly measures of consumption appear to have a very different
growth rate than GNP does. (See footnote 4.)

At the same time, we recognize that the monthly consumption data are problematic
for the CTMH. This is because the first difference of monthly consumption, as measured
by real expenditures on'.nondurables plus services, is negatively autocorrelated. [See, for
example, Heaton (1989).] If the CTMH holds, and monthly and quarterly consumption
were measured with the same degree of accuracy, then the first difference of both monthly
and quarterly consumption should display the same autocorrelation coefficients. Heaton
(1989) considers a model in which agents who have time-nonseparable preferences over
alternative streams of consumption make decisions on a continuous time basis. His model
 has the attractive feature that it can simultaneously match the estimated autocorrelation
function of the first difference of both monthly and quarterly consumption, as measured by
expenditures on nondurables and services. Unfortunately, this particular consumption
measure is problematic from the perspective of our equilibrium model because this measure
and real GNP appear to have very different growth rates. Nevertheless, we are

sympathetic to the basic strategy of adopting specifications of preferences and technology
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which can in principle explain the time series properties of data measured at different

sampling intervals.
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APPENDIX A
Ruling Out Underutilization of Capital and Labor

Our decision rules in Section 3 solve an optimum problem subject to the constraint
that capital and labor are never underutilized [equation (3.5)]. Here we discuss conditions
under which this constraint is nonbinding.

That labor is never underutilized follows trivially from the facts that 7(t) is known
when Dk(t) and h(t) are chosen and that a{t) > 0. Thus, 6k(t) > 7{t)h(t) for almost all .

It is harder to establish general conditions under which the constraint that capital is
never underutilized is nonbinding. For this reason, we restrict ourselves to finding
conditions that are sufficient in deterministic steady state. In addition, our conditions only
guarantee that local deviations from the constrained optimum which violate (3.5) are
suboptimal. We consider two alternative deviations: (i) the capital stock is increé,sed
without adjusting hours, or (ii) hours worked are decreased without changing the path of
the capital stock.

"Consider ). Hefe we use an argument analogous to our derivation of the real rate of
interest in Section 3. Suppose that investment is increased at time t by an equal reduction
in c(t) and that the increased stock of capital is held until t + A, at which time the
undepreciated part is consumed. Tﬁe marginal cost of this is b(t) —c(t), while the
discounted marginal benefit is exp[{(r+7)A][b(t+A) — ¢(t+A)]. The condition that (i) is

locally suboptimal requires that
(A.1) b(t) — c(t) > exp[{r+m)A][b(t+A) - c(t+A)]
forallt > 0 and A > 0. According to (3.12) and the fact that r — § < 4 [by equations (3.13)

and (3.14)], we have that, in steady state, b(t+A) — c(t+A) = exp(fA)[b(t) — c(t)]-

Therefore, in steady state, (A.1) is equivalent to
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(A.2) r+ 71> 4.

Now comsider (ii). Decreasing hours worked without adjusting capital generates
instantaneous costs and benefits equal to Er(t)[b(t) —c(t)] and aft), respectively, which

produces a local decrease in utility if
(A.3)  b(t)—c(t) > H(t)/6.

In steady state, (A.2) implies (A.3). To see this, note that the deterministic version of
equation (3.9) is [D — (r=6)][b(t) — c(t)] = H(t) or, in steady state,

(A4)  b(t)—c(t) = H(t)/[0 - (-0)]

since in this case D[b(t) — c(t)] = O[b(t) — c(t)]. Equation (A.3) follows immediately from
(A.4) after we use (A.2) and the fact that § = §—m

We conclude that 1f (A.2) is satisfied, then (3.5) is locally nonbinding in steady state.
Condition (A.2) is satisfied for the models in the text since 7 > 0 and we parameterize 1

and §in such a way that r > 6.
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APPENDIX B
Deriving the Decision Rules (3.8) and (3.9)

Here we show how we derive the decision rules (3.8) and (3.9).
Proceeding as do Hansen and Sargent (1980), we can show that the Euler equation for

the social planner’s problem is

(B.1)  [D-[D ~ (r-8)]k(t) = [D — (=-8)][e(t) - b(t)] + H(t).

The unique solution to this problem which satisfies (3.4) is

(B2)  [D—(--8)Jk(t) = eft) - b(t) - (260)E, [ ¢ 0T fe(t+7) - b(t+7)} d7
0

[11]
~E, [ ¢ TH(t+1) dr.
0

When definition (3.7) is taken into account, (B.2) produces the first part of (3.8). The
second part of (3.8) is obtained by substituting the first into the relation c(t) = k(t) —
Dk(t) + e(t).

To derive (3.9), we first present some preliminary results regarding xp(t). Suppose the
fundamental representation for x(t) is x(t) = C(D)e(t). Here C(s) = 0 implies that Real(s)

< 0 and the poles of C(s) lie in the closure of the left side of the complex plane. Then

x(t) = ~6E, [D-8] " x(t)
(B.3) = —8E,C(D)[D-5 " «(t)

= —4[0(D) ~ C(&[D-e(t)
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by a formula due to Hansen and Sargent (1980). Multiply (B.3) by D — § and rearrange to

obtain

(B4 (D-8x,(t) + &(t) = (1)

where yxp(t) = §C(6)e(t). From the second part of (3.8),

(B:5)  [D~ (x=8)le(t) = (26-)(D - (=~4)Ik(t) + [D ~ (z-O)]{(26-1)8~ lep(t)
+ [b(t) ~ by(e)] - (-0)67 b (8) + B (1)/8}.

Relation (3.9) follows by substituting the first part of (3.8) into (B.5) and then using (B.4).
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APPENDIX C
Deriving the Probability Law for (i(t)

Our strategy for obtaining the probability law for c-l(t) is to derive the linear mapping
relating E(t) and &(t) and then use this expression to substitute out for :;(t) in terms of
(3.20) and (3.25).

We proceed by first obtaining the linear mapping between undetrended a(t) and
undetrended c-l(t). Let z(t) denote the undetrended process underlying E(t); that is, z(t) =
[c(t) —;r(t), Dc(t)]”. Also, let z(t) denote the undetrended, averaged data underlying c-l(t);
that is, Z(t) = exp(6t)q(t). Formally,

1

f [c(t—7) —;'(t—-r)] dr
01 =
[ [e(t=r) = c(t-1-7)] dr

0

[c(t—r) — y(t-)] dr

) .
f De(t—mg) dp| dr
0

(C.1) z(t) =

T o

Here we have used the fact that j(l) Dc(t—u) dg = c(t) — c(t-1). Treating measured
consumption and income as unit integrals of the underlying instantaneous quantities is a
rough approximation to the methods used by the U.S. Department of Commerce. In

operator notation:

(C2)  E(t) = G(D)a(t),
where

1 0
0 (1-D)/D

(C.3)  G(D)=[1-€D] /D[

In deriving (C.2), we have used the fact that j(ll x(t-r) dr = 1(1) e_TDx(t) dr =
-D
[(1—")/DIx(t).
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* N *
Let q(t) demote the undetrended value of q(t); that is, q(t) = exp(ft)q(t) =
[e(t) — y(t), De(t)]. In operator notation, the link between q(t) and z(t) is given by

(C4)  qt) =H(D)s(t),

where

D ©

(C.5)  H(D)= J(D+7).

+7

Equation (C.4) can be derived as follows: q(t) = [c(t) — y(t), Dc(t)]” = [-Dk(t), De(t)]” =
H(D)[{D+mk(t), Dc(t)})’ = H(D)c-;(t), where the last equality follows from (3.3) and
(C.5).

Substituting (C.4) into (C.2), we obtain

(C6)  a(t) = E(D)G(D) " =(t)

which provides a mapping between the continuous time process q(t) and z(t), that is,
* ~ * -

between undetrended q(t) and undetrended q(t). Finally, the link between q(t) and q(t) is

obtained by multiplying both sides of (C.6) by exp(—6t):

(C7)  a(t) = H(D+OG(D+6) " q(t),

which is equation (4.1) in the paper. Substituting (C.7) into (3.20) and (3.25), we obtain

the time series representations for q(t) implied by the two versions of our model.
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NOTES

IThis measure is a revised and updated version of the measure discussed in Musgrave
(1979).

?This measure is that labeled by the data mnemonic NPT in the Wharton
Econometrics data base.

3When this restriction is not imposed, the measured growth rates of ¢ and } are
0.004582 and 0.004606, respectively.

In contrast to our measures ¢ and ;;r, the per capita growth rates of consumption and
income in these latter two data sets are quite different. Over the sample period
1950.2-1985.3, the growth rates of Chd T S5 Cpgr and y q are 0.004987, 0.003076, and
0.005502, respectively. |

SHere Wi is a consistent estimate of the spectral density of Ht(p(l)’ CO) at frequency
zero. In computing WT’ we took into account that Ht(pcl), CO) is autocorrelated at lag 1
but not higher. This is implied by the fact thaf Et_ZHt(pcl), CO) = 0. See Hansen, Heaton,
and Ogaki (1989) for a discussion of the efficiency gains associated with imposing the exact
autocorrelation structure on error terms in GMM estimation problems. This procedure was
used in all weighting matrix calculations carried out in the context of tests of the CTMH in
this section.

SHansen’s (1987) model is formulated in discrete time and sets aft) = 0.

"There is a potential incompatibility between the procedure used to estimate # and the
Gaussian maximum likelihood procedure used to estimate the remaining parameters. In
estimating #, we take logarithms of variables (in Section 2.A) which are subsequently
assumed to have a Gaussian distribution.

8In general, the structural models with § unconstrained imply a SARMA(4,5)
representation for the observable Q(t) vector. However, the point estimates of a, (in the
DLR model) and a (in the SLR model) are extremely large, so that the ex(t) and e(t)

processes are virtually indistinguishable from continuous time random walks. Therefore, in
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the SARMA(4,5) representations implied by these models, the MA rr;atﬂx coefficients on
the fifth lag and the AR coefficient on the fourth lag are approximately zero. By a similar
argument, the models with § constrained to equal r can be nested within a SARMA(2,3).

SWhittle’s (1953) correction for small sample bias is as follows: Let N = the total
number of parameters under the alternative hypothesis (excluding the covariance matrix of
the observables), M = the number of equations, T = the number of observations, and J T=
the unadjusted likelihood ratio statistic. The adjusted statistic J;. is then given by J; =
(1-N/MT)Jp. When the unconstrained alternative is a SARMA(3,4), N = 19, M = 2,
and T = 141, so J,; = 0.933J .
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TABLE I -

Results of Tests of First—Order Autocorrelations
of Detrended Consumption First Differences®

Sample Period Cod Cod T C c
1951.3-85.3 .260 237 .256
(-070) (.072) (.078)
1952.3-85.3 276 .269 276
(.072) (-065) (.087)
1951.3-79.1 250 .201 .269
(.082) (.080) (.086)

*Estimates of the first—order autocorrelation of the detrended first difference
of consumption (with standard errors in parentheses). Column headings
indicate the measure of consumption used. For variable definitions, see

Section 2.



TABLE III

Results of GMM Tests of Continuous Time Random Walk Hypothesis for Consumption®

Lagged, Detrended Income

-

Sample Period C,y

Lagged, Detrended

Consumption Minus Income

Chid T % ¥q  Cpg Y4 ¢y Cpd TS ¥qa  Cngr V4
1951.3-85.3 .008 170 .024 .028 .210 .029
1952.3-85.3 041 187 012 118 270 .091
1951.3-79.1 040 174 135 242 180 .090

®Significance levels of tests of the joint hypothesis that the detrended first difference of consumption is

uncorrelated with explanatory variables laggéd 2, 3, and 4 periods and that the first—order

autocorrelation of detrended consumption first differences equals 0.25. The results are grouped by the

explanatory variables besides detrended consumption first differences: detrended income and detrended

consumption minus income.



TABLE IV
Parameter Estimates and Test Statistics for the DLR and SLR Models

DLR Model Results with § SLR Model Results with §
Parameters and Statistics Unconstrained Constrained® Unconstrained Constrained®
Point Estimates ay 163 .152 — —_—
(and Standard Errors) (-060) (-060)
2 36.12 27.57 _— —
(147.81) (81.81)
f —_ - .136 .089
(.043) (.035)
a —_ —_ 12.19 11.75
(12.44) (11.29)
x 41 x107° 0032 041 058
(.20 x 1072) (.058) (.032) (.042)
é .0088 .0098 .0078 .0098
(.0015) (=) (.0007) (=)
Vcb 484.63 496.29 488.51 521.63 663.74 317.06 659.82 483.60
496.29 720.71 521.63 719.52 317.06 265.22 483.60 465.28
Log Likelihood —843.122 ~-843.249 —841.601 -842.982
Likelihood SARMA(3,4)
a0 o Tp 25.21 25.76 22.46 95.22
: .044 ’ .058 .096 .066
(and Marginal (-044) (-058) (-096) (.066)
Significance 3 23.79 24.02 20.95 23.52
Levels for
Chi-Square (.069) (.089) (.138) (.100)
Distribution) 1, . ees of Freedom 15 16 15 16
SARMA(2,3)
Iy 22.49 22.74 19.44 22.20
(.013) (.019) (.035) (.023)
J,} 21.37 21.61 18.48 21.10
(.019) (.028) (.047) (.032)
Degrees of Freedom 10 11 10 11

®Here § = 1. Throughout, r = 0.0098 and § = 0.004568.

bThe variable V. is the covariance matrix of the vector [7;(t)/8(a;+8), no(t)/ Kag+4)].

“The statistic JT tests the overidentifying restrictions of the model against the unconstrained alternative. The corresponding

adjusted statistic, J7, is described in Section 4.B.
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