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Abstract

This paper considers a policy environment in which policy is not
set by a single policymaker, but by a sequence of policymaking
administrations. = Administration turnover is determined by a
simple random process. The consequences of administration turn-
over are traced through for two versions of a linear rational expec-
tations model, and numerical simulations of various policy environ-
ments are presented.
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i. Introduction

Since the appearance of Kydland and Prescott (1977) , henceforth
K-P, macroeconomists have increasingly turned to game thleor‘y in
constructing both positive and normative models of policy. There
seems to be a considerable amount of disagreement, however, as to
the role of game theory in "real world" policymaking.

K-P presents two kinds of game theoretic models of policy: time
consistent (or discretionary) leader-follower games and time in-
consistent (or precommitment) games. In the K-P view, real world
policy is likely to correspond to the leader’s equilibrium strategy
in a time consistent game, in which the policy authority represents
the Stackelberg leader and the public represents the follower(s).
The outcomes of such games are by construction time consistent, in
the sense that the policy authority has no incentive to alter its poli-
cy rule as time passes. However, there will almost always exist
policy rules that outperform (yiezld a better value of the policy ob-
jective than) any consistent rule. Although these better-performing
rules are socially desirable, they will also not be time consistent;
as a result, the policy authority would be tempted to alter these
rules as time passes. In the absence of explicit constraints on the
actions of the policy authority, K-P argues that such policy rules are
not credible. Thus, according to this argument, there typically
exists room for social gain by adopting some fixed rule for policy,
or by imposing constraints on the actions of policymakers. K-P
demonstrates the potential for such gain by considering games in
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in which the policy authority has complete credibility, i.e., pre-
commitment or open loop leader-follower games. In these games,
policy rules are set once and for all at the beginning of the game.
These rules are never altered, no matter how strong the incentive
to renege.

Given K-P’s results, a reasonable question to ask is, to what
extent do the two policy environments considered (discretion and
precommitment) represent the menu of alternatives in real world
policy situations? Orne interesting line of research that addresses
this question is given in papers by Barro and Gordon (1983a,
1983b), Backus and Driffill (1985a, 1985b), Canzoneri (1985), and
Tabellini (1983}. In each of these papers, positive models are
constructed in which monetary policy is described as resulting
from games where the reputation or credibility of the monetary
authority is determined endogenously. In these models, equilibrium
outcomnes often result in values of the policy objective intermediate
between the values corresponding to the discretionary and precom-
mitment outcomes. The theoretical potential for social gain via im-
plementation of fixed rules is therefore less than in the K-P setup.

Sims (1982) has attempted to address this question from an
empirical direction. In Sims’s view (1982, p. 109), it is un-
realistic to characterize the formation of policy as a once-and-for-
all decision. Due to the inherently political nature of the policy
process, Sims finds it unfruitful to compare discretionary outcomes
to outcomes under fixed rules, since implementation of a fixed rule
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would not be politically feasible. Accepting this limitation on the
policy environment raises the interesting possibility that, in many
cases, the historical performance of poli30y may have approximated
the best politically feasible performance.

The analysis presented below represents an attempt at inter-
preting Sims’s view of policymaking by broadening the spectrum of
game theoretic models of policy available to macroeconomists.
This is done by considering a class of models which are in some
sense intermediate between the discretionary and precommitment
models. This class of models is intended as neither purely positive
.nor normative, but is instead presented as a first attempt at under-
standing the effects of political uncertainty in a rational expecta-
tions setting. Although "political uncertainty" as defined in this
class of models doesn’t exactly correspond to Sims’s (1982) defini-
tion, there are some interesting similarities between reduced
forms implied by the models below and those advocated by Sims.

The basic idea of the models is to model policy formation not as
a game between the public and a single policymaker, but rather as a
game played between the public and a sequence of policymaking
administrations. The administrations come into power at random
intervals. Upon coming into power, each administration announces
a policy plan that will hold as long as that administration stays in
power. With the (random) arrival of a new administration, replan-
ning occurs, hence the term "stochastic replanning.”



For purposes of tractability, the analysis below simply assumes
each administration to be completely credible. Although this con-
cession to tractability might be seen as overly generous, the ap-
proach taken here could be viewed as roughly complementary to that
taken in the reputational models of Barro and Gordon and oth4er‘s,
which abstract from the possibility of administration turnover. A
complete theory of policy would probably involve neither of these ab-
stractions.

The rest of the paper is organized as follows. Section 2 illus-
trates the idea of stochastic replanning in a two period model.
Section 3 derives a stochastic replanning equilibrium in a simple
rational expectations environment. Section 4 extends the analysis
to the case where the public does not know the decision of the cur-
rent policy authority. Section 5 offers some interpretations of the
models presented, as well as some numerical simulations. Section
6 concludes the paper and offers some possible directions for future
research. Mathematical proofs are relegated to appendices.

2. An Example

Consider the simple dynamic game depicted in Figure 1. In this
game there are two players (P! and P2) and two time periocds (O
and 1). Payoffs occur at the end of period 1 and each player seeks
to maximize his payoff. The players must choose either decision O
or 1 at the beginning of each period. P1 is dominant in the sense
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Figure 1: A Two Period Dynamic Game

Period { Decisions Payoff

Period 0  Period! + i
Decizions State
— a
} Il 1,1 [ 10,
— 1.0 {1 7.4
— 1,1l — Yi:I....__
— 0,1 [ 11,2
0,0 [ 8,1
1,1 —{ 2,2
1,0 [ 0,1
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State — 0,1 1 6,6
' — 0,0 [ 0,3
o= i1 [ 0,0
1,0 [ 0,0
-D,l———‘i’i:HI-— .
I O ? 1 { 7'16
— 0,0 { 0.0
1,1 [25,-1
] — 1,0 - 0,-2
—0 . Qg ——r-o ‘r"i:IV__
0,1 [ 20,2
— 0,0 [ 4,0




that he is first to announce his strategies, which P2 must take as
given. In this sense, P1 “goes first" in each period although nothing
is changed if we assume that decisions are taken simultaneously by
both players in equilibrium.

The precommitment (or open loop) solution to this game can be
found using the payoff matrix of Figure Z. In this solution, P1
announces a sequence of decisions which P2 must take as given in
deciding which sequence to play. By enumeration, the best sequence
for P1 is (1,1), in which case the optimal strategy for P2 is also
(1,1), resulting in equilibrium payoffs (10,5). The time inconsis-
tency of this solution is evident: P1 clearly has an incentive to
change his period 1 decision to zero, once period 0 has passed. If
this were to happen, P2 would play decision one, resulting in payoffs

(11,2},

The game in Figure 1 also admits a time consistent Stackelberg
solution.  That solution may be found by backward induction, as
outlined in Figure 3. We first solve for the equilibria of each of
the four possible period 1 subgames, again under the assumption
that P1 goes first. Having done this, first period equilibrium deci-
sions are then computed as in a static Stackelberg game, taking the
equilibrium payoffs of the period 1 subgames as given. Proceeding
in this fashion yields equilibrium strategies (0,0) for P1 and (1,1)
for P2, and equilibrium payoffs (7,6).

If we seek to describe policymaking in terms of a dynamic
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Figure 2: Precommitment Solution

(Player 1 Is Dominant)

\ P2
PL\ | 0,0 0,1 {,0 {1
\
0,0 4,0 | 20,2 | 0,0 7,6
0, 1 0,2 | 25,1 | 0,0 0,0
L
{,0 0,3 6,6 8,1 1,2
K3
£, 1 0, 1 2,2 7,4 {0, 5

* = equilibrium outcome




leader-follower game, the consistent solution seems the more real-
istic of the two solutions outlined above. The intuitive appeal of the
consistent solution is increased if it is viewed as the outcome of a
noncooperative game with three players: P2, representing the pub-
lic, and two policy administrations, one acting at time O and one
acting at time 1 (call them AQ and Al). Each administration seeks
to maximize the payoff accruing to the pericd 1 administration.
While the time 0 administration can predict what the time 1 ad-
ministration will do, it cannot control the future administration’s
actions, which precludes any pr*ecommi’cmen’c.6

Replanning Equilibrium

In the stochastic replanning solution to this game, there are also
two policy administrations. However, the period 0 administration
can now commit itself to period 1 actions, which will be realized
with exogenously specified probability a, where 1 > a > 0. Viewed
in another way, there is a probability a that AQO will not be re-
moved from power in period 1. Conditional on this last event, the
probability of AQ sticking to its original plan is one. Under this
setup, the objective of the Al is, as in the consistent game, to
maximize its end of period payoff. The objective of AQ is taken as
to maximize the expected payoff accruing to either administration

at the end of period 1.

The stochastic planning solution can be derived by backward

induction. If Al comes into power, then it chooses its (period 1)
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strategies as in the consistent solution (Figure 3), irrespective of
the value of @. The period O administration (AO) must take into
account that its period 1| strategies may not be implemented, as
must the public (P2). For a = 1/2, the resulting period 0 expected
payoff matrix is given in Figure 4. This matrix is calculated by
averaging the entries of the matrix in Figure 2 with the appropriate
subgame outcomes. Inspection of the matrix in Figure 4 reveals
that the equilibrium of this new game occurs when AQ plays (0,0),
Al plays 0, and P2 plays (1,1). The equilibrium outcome for this
value of «a is thus the same as in the consistent solution. For suf-
ficiently large a ( > 4/7), however, the period 0 administration
would find it optimal to play the precommitment strategies (1,1) .
The reader is invited to verify this using an appropriate value of a.

3. Stochastic Replanning with an Infinite Horizon

The idea of stochastic replanning will now be extended to a more
complex dynamic game. An example will be considered where pri-
vate agents and policy administrations have potentially infinite plan-
ning horizons. The example to be considered will be the "generic"
one considered by Whiteman (1986) in deriving expressions for the
precommitment and time consistent solutions to policy games with
linear rational expectations models. The example is simple enough
to be tr*e;ctable, yet captures the essential features of more complex
models. In this example, policymakers are confronted with



Figure 3: Consistent Solution

(Player i is dominant)

Att=1:
\ \
PL\P2| © y PL\P2| © {
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Figure 4: Replanning Solution

(a=1/2)
\\ P2
A0 \ 0,0 0,1 1,0 1,1
\
x

0,0 |14.5,-5 |225,.5 | 3.5, 3 7.6
0,1 12.5,-1.5 | 25,-1 3.5, 3 3.5, 3
{,0 3,4.5 6.6 9.5,1.5 | 11,2
1 3,3.5 4,4 9,3 10.5,3.5

* = equilibrium outcome
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E, y(t+1) - p y(t) = x({t) + e(t) (1)

where y(t) is an endogenous random variable reflecting decisions
made by the public, p is a parameter with [p| > 1, x(t) is a vari-
able controllable by the current policy administration, and ef(t) is
the current realization of a forcing process. The process {e(t)} is
assumed to follow the AR(1) law

et) = y elt-1) + u(t) (2)

where |y < 1 and {u(t}} is Gaussian white noise. The symbol E, is
the conditional %xpectation operator, where the conditioning set is
explained below.

One macroeconomic model that gives rise to equation (1) is a
version of Cagan’s portfolio balance schedule:

n [E, plt+1) - p(t) ] =m(t) - p(t) (3)

where n < 0, pft) = log of the price level, and m(t) = log of the
money stock. Manipulation of equation (3) yields equation (1), via
the substitutions p = (n-1)/n , ylt) = p(t), and x(t) + elt) = m{t)/n.
One could interpret -x(t) as proportional to the log of the monetary
base, and -e(t) as proportional to the log of the base multiplier,



Policy Dynamics

Turnover of administrations is governed by the sequence of inde-
pendent Bernoulli random variables {S(t)}, where
f O if replanning occurs (a new administration comes

S(t) = A into power) at time t;

1 otherwise.

.

There is always probability a that the current administration will
continue in power next period, which together with the serial inde-
pendence assumption implies the convenient properties:

(C1) Pr{S(t+n) = j | St), St-1), ** } = Pr{St+n) = j }

l-aforj=0

, forn=1, 2, 3, **
a forj=1

(C2) The probability of any current administration being in
n

power n pericds in the future is «
The public and the administration currently in power are assumed
to know the complete histories of {e(t)} and {S(t)} up to time t. The
processes {e(t)} and {S(t)} are assumed to be independent at all leads
and lags.



The objective of the administration coming to power at time t

will be taken as to minimize

J

lim %Et > ﬁj [y(t+j)2 + A x(t+j)2] ,
J-r0 =0

A

where A > 0 and 1 > B > 0, by choice of a plan for {x(t+j)}jfo .
taking the plans of future administrations as given, and taking into
account the public’s decision rule. . The rule for x(t+ j) may only
depend on j and elt+j), e(t+j-1), .

A stochastic replanning equilibrium for this model is a pair of
* *
sequences ( {x (t})} , {y ()} ) such that for any realized path of
{S(t)} and {elt)}:

(E1) The public’s expectational equation (1) holds;

(E2) For all t, x*(t) reflects the optimal choice of the admin-
istration currently in power.

The cases where @ = 0 and a = 1 correspond respectively to the

time consistent and precommitment Stackelberg games analyzed by
Whiteman (1986).

Although this example is greatly simplified, it incorporates
important features of policy problems under rational expectations.
The objective of the policymaker(s) is to minimize the discounted

10



weighted sum of squared fluctuations in the "target variable" y(t)
and the "policy instrument" x(t). In considering the effects of poli-
cy, each policymaker must take into accourt the effect of policy
choice on the public’s anticipations . This can be seen by manipula-
ting equation (1) as in Sargent (1979, p.269) to yield

y(t) = zp -] E, [x(t+]) +elt+j) ] . (4)
j=0

The choice of y(t) thus reflects the public’s anticipations of all
future actions by policymakers.

i0
Derivation of the Stochastic Replanning Solution

To derive the stochastic replanning solution, I now make two
additional simplifying assumptions. First, following Whiteman
(1986), the discount factor g is taken to equal 1. This assumption
does not affect the qualitative properties of the solution and reduces
notational complexity. Alternativély, we could think of the results
below as applying to the case where each administration has the
average cost objective
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J
1 2 2
lim —E > [ylt+)) +Ax(t+g) .

This interpretation is somewhat problematic, however, because each
administration, when 1 > a 2 0, is optimizing over a sequence of
events that ultimately has zero probability. This causes its optimi-
zation problem to be ill-defined.

Second, I assume certainty equivalence and solve the model first
for the case that var(u(t)) = 0. This is common practice for linear-
quadratic-Gaussian models. Because each administration’s objec-
tive function turns out to be time nonseparable, however, the usual

! Absent more

theorems justifying this practice will not apply.!
general results, the analysis below constrains each administration’s

policy rule to be linear in the shocks e(t), e(t-1}, -*-.*2

To evaluate expectations when {e(t)} is nonstochastic, first de-
fine the process w(t) as

wit) zmin {t-j} s.t. j<t, S =0.
J

In other words, wit) is the age of the administration in power at
time t. Denoting the administration coming to power at time t as
A(t), the administration currently in power at a given time t is

Alr-w(t)].



The process {w(t}} is a Markov chain with state space equal to

{0, 1, 2, =+ }, and transition matrix ] given by
(l-a) a 0 O
({-a) 0 a O
(l-a) 0 0 «a

—

The model is constrained so that an administration coming into
power at time t can only maximize along the path w(t+j) = j for j
=0, 1, 2, **. Hence x(t) and y(t) will be w(t)-measurable, and can
be written x(t,w(t)), and y{t,w(t)}. The plan by A(t) for x(t+j) will
be denoted x(t+j, j).

Exploiting the Markov nature of wi(t}, equation (4) can then be
rewritten in the form

y(t,w(t)) - e(t) /(y-p)

1 0 wit)+k
+ 0 Se¥ S xttk,m) Priwt+) =m|w®)} =0 (5)
k=0 =0

[
L2



That is, the form of the transition matrix [] guarantees that k
periods from now, w(t) must take on a value between O and wit) + k.
The term Et x(t+k) can then be evaluated by weighting the w(t) + k
possible values of x(t+k} by their probabilities and summing.
Similarly, an administration coming to power at time t will have

"objective function”
® J 2 2
10 =43 { 3 [y, m)* ity n )]
j=0 n=0

x Pr {w(t+j) =n | w(t) }

Following the approach used in Hansen, Epple, and Roberds
(1985}, the problem of administration A{t) can be solved using the

Lagrangian
@ J
Iy =Jt) + > { > 6(t+j,n)c(t+j,n)}
=0 n=0

< Pr{w(lt+j) =n|w(t)=0}

where c(t,w(t)) = LHS of equation (5}, and 8(*) is a random Lagrange
multiplier. This is done by differentiating Z(t) with respect to
x(t+j,w(t+j)) and y(t+j,w(t+j)) along the path w(t+j) = j. By dif-
ferentiating J(t) with respect to y(t+j,j) the administration A(t) is
allowed to choose y(t) along one path for w(t). However, y(t} must
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be chosen in a manner consistent with the public’s decision rule, as
expressed in equation (35).

By carrying out the differentiation described above the following
result can be shown (see Appendix A):

Lemma 1. In equilibrium, the relations

y(t) = (Ap) x(t), when S(t) =0 (6)
or

y(t) = (Ap) x(t) - A x(t-1) , when S(t) =1 (7)
must hold. [J

Lemma 1 implies that an equilibrium pair of sequences (x*,y*)
must satisfy conditions (5), (6), and (7). Equations (6) and (7} give
a representation of the optimal plan for x(t) as a function of y(t) and
lagged x(t). The form of this representation is independent of «.

Simultaneously solving equations (5), (6), and (7) then yields the
following result (see Appendix A):

Theorem 1. One stochastic replanning equilibrium is defined im-
plicitly by the equations

* *
X (t) =fpeft) +f; S{t)x (t-1) (8)
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Y (L) = bo e(t)+ by X (1) ©)

where fy, fy, by, and by are functions of A, @, p, and y. This equi-
librium is unique in the class of equilibria satisfying the stability
condition

E, x(t+)) , E, ylt+j) > 0 as j > 0 . [

Note that by manipulating equation (8), one can obtain the rep-

resentation
w(t)
* _ J .
x (t)=f, > fiel(t-j) (10)
j=0

implying that x*(t) and y*(t) are, as explained above, w(t)-measur-
able when {e(t)} is nonstochastic.

4. The Delayed Information Model

Using the same approach as in Section 3, it should be possible
to derive stochastic replanning equilibria for a number of different
policy environments. For example, the setup of the previous section
can be modified to reflect an assumption that the current policy
administration knows more than the public.

Following the setup of Sims (1985), suppose that each time

16



period is split into two subperiods, t - 4 and t. The public chooses
y(t) at time t - 4. At time t, w(t) and e(t) are realized, and x(t} is
chosen. Each of the last three events is observed by the public. At
time t + 3, the public chooses y(t+1), etc. Under this setup, the
public does not know the time t values of e(t) nor w(t) when making
its decision for time period t, but the current (time t) administra-
tion does. For this reason, the model of this section will be re-
ferred to as the "delayed information model." The model of the
previous section will be referred to as the "contemporaneous infor-

mation model."

To understand the effects of delayed information, it may be use-
ful to reconsider the two stage game depicted in Figure 1. In this
game, the assumption of delayed information amounts to reversing
the order of play at each stage, so that P2 goes first at each stage.
P!l is still dominant in the sense of being first to announce strate-
gies. Thus, in the case where a = 1, reversing the order of play
has no impact on the outcome of the game. However, in the replan-
ning case (1 > a > 0), this assumption is less innocuous. To see
this, consider Al’s problem at the second stage of the game (see
Figure 5). In this stage, P2 moves first, without knowing whether
A1l has come to power. All that Al can do is then choose an op-
timal reaction to P2’s second stage move., The resulting outcomes
are marked with an asterisk in Figure 5.  As with the contempo-
raneous information model, equilibrium strategies for A0 and P2
can then be found by considering a weighted average of the outcomes
shown in Figure S and the payoff matrix in Figure 2, the weights
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Figure 5: Replanning Solution

Att=1":

AL\ P2

(Follower Has Delayed Information)

\

At\P2| 0 {
o |0,0!%7,6
{ 0,0 0,0

Y, =1II
\

AL\ P2| © i
o |"8,1|M1,2
i 7,4 10,5

Y, =1

* = optimal reaction of Al




being respectively a and 1-a. Performing this computation for ¢ =
0.9 yields the expected payoff matrix shown in Figure 6. Inspection
of this matrix reveals that the equilibrium strategies of AQ and P2
are the same as in the precommitment game. The expected payoff
of AQ, howevlesr‘, is slightly higher, 10.1 versus 10 for the case
where a = 1. Finally, we can derive the consistent solution for

this case by taking limits as a { O.

Returning to the stabilization example, in the delayed informa-
tion case the public’s decision rule can be represented as

(o0 .
y© =1 S eTE, [x(t4)) +elt+) ] (1)
=0

The policy administration’s objective functions remain as before.
In Appendix B, the following result (analagous to Theorem 1) is
shown for the delayed information model:

Theorem 2. For the delayed information model, the unique stable
stochastic replanning equilibrium is defined implicitly by the equa-

tions
X(t) = g0 S elt-1) + g SE) X (t-1) (12)
2. *
y (t) =mpe(t-1) + myx (t-1) (13)

where gq, g, do, and d; are functions of A, «, p, and y.0O

18



Figure 6: Replanning Solution

(Follower Has Delayed Information, and a = 0.9)

\\ P2
AD N\ 0,0 0,1 1,0 1,1
\
| |
0,0 4,0 |20.5,1.7 0, 0 7.6
i
0,1 4,-1.8 | 25,-1 0,0 7.6
1,0 0, 3 6.6 8, 1 11,2
i
11 0,1.2 | 24,24 | 7.1,3.7 |10.1,4.7

* = equilibrium outcome




An interesting feature of the delayed information model is that
the optimal value of x(t) is always zero for an administration
coming to power at time t. Correspondingly, the optimal time con-
sistent strategy for this model consists of setting x(t) = O for all t,
i.e., of never intervening under any circumstances.

5. Discussion and Numerical Simulations

The models presented in the two previous sections posess equi-
libria that are, loosely speaking, intermediate between the pre-
commitment and time consistent models. When 1 > « > 0, the
optimal strategy of each administration is time inconsistent. The
public knows, however, that the current administration’s strategy
cannot remain in place forever, and takes that fact into account in

formulating its decisions.

A characteristic feature of the stochastic replanning equilibria is
the nonlinearity of the equilibrium laws of motion for x(t), as seen
in equations (8) and (11). Alternatively, we could think of these
equations as being linear with randomly time varying coefficients.
In this sense, the models presented above give rise to reduced forms
that resemble those suggested by Sims (1982) as useful for predict-
ing the effects of policy. As with Sims’s setup, optimal predictors
of future x(t) and yft} can be constructed using the time varying
VAR model implied by equations (8) and (11). However, the form
of the optimal predictors will be linear (in the x and e processes)
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16
and time invariant.

Evaluating Relative Policy Performance

The nonlinear nature of the law of motion for x(t) also renders
somewhat cumbersome closed form comparisons of policy perfor-
mance (i.e., of J(t) for different values of a). For this reason,
Monte Carlo simulations were used for these comparisons. The
results of 21 such simulations are reported in Table 1. Simula-
tions 1-9 are of the contemporanecus information model, while
simulations 10-21 are of the delayed information model. In each
of the simulations, the parameter values p = 1.1, y = 0.9, and
var(u(t)) = 1.0 were assumed. The parameter A was allowed to
take on the values 1.0, 10, and 0.1. For simulations 1-18, the
parameter a was set to 0.0, 0.5, and 1.0, while the value « = 0.9
was assumed for simulations 19-21. A random number generator
was used to construct artificial time series of length T = 500 for
e(t), and S(t) in the cases where 1 > a > 0." As an approximation
to 2T 13 (t), the statistic

S(a,A) =svar(y) + Asvar(x)

was calculated for each simulation, where "svar' means sample

variance. A sample performance index was then calculated as

Pla,A) =100 [S(a,A)/S(0,A)]
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Table 1: Evaluation of Policy Performance

Performance
Simulation A A Index P (%)
(Conternporaneous Information Model)
| { 0 100.0
2 { 0.5 76.9
3 | | 58.6
4 10 0 100.0
S 10 0.5 74.6
6 10 { 44.0
7 0.1 0 100.0
8 0.1 0.5 95.8
9 0.1 | 91.2
(Delayed Information Model)
10 1 0 100.0
11 { 0.5 3.15
12 1 | 2.91
13 10 4 100.0
14 10 0.5 27.8
15 10 1 20.2
16 0.1 0 100.0
17 0.1 0.5 204
18 0.1 { 319
19 | 0.9 2.50
20 10 0.9 18.1

21 0.1 0.9 274



The index P gives the sample performance of policy as a percentage
of the performance of the best consistent policy for that model.

For the contemporaneous information model, simulations 1-9
suggest that the performance of policy improves (i.e., the relative
index P decreases) monotonically as « increases. For example,
when A = 1, increasing a from O to 0.5 yields a 33% drop in the
policy loss function, while increasing « from O to 1 yields a 42%
decrease (see simulations 1-3). Simulations 1-9 also suggest that
the importance of precommitment increases with the weight (A)
attached to fluctuations in the policy instrument x(t). This is evi-
denced by the values of P obtained when @ = 0.5 or 1.0 for the vari-
ous values of A that were tried. For example, when a = 1, im-
provement over the time consistent case is only 8.8% when A = 0.1,
but increases to 66% when A = 10 (see simulations 6 and 9). In
fact, I was unable to reverse these orderings, even after trying
many different parameter values. It would therefore seem reason-
able to conclude that they will always hold for this particular
model.

Simulations 10-21 indicate that different orderings can hold for
the delayed information model. While interventionist policies
(corresponding to a > 0) appear to dominate the passive policy of
always setting x(t) = O (corresponding to @ = 0}, the performance of
policy no longer monotonically improves with increasing a. For
example, when A = 0.1, the performance of policy when a = 0.5 is
better than the performance of the precommitment (@ = 1.0) policy
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(see simulations 17 and 18). For all values of \ censidered, the
performance of policy when a = 0.9 dominates the performance
under @ = 1.0 (compare simulations 19 and 12, 20 and 15, 21 and
18). Intuitively, this can happen because in the delayed information
model, policymakers intervene only after the public has committed
itself. With a positive cost attached to policy interventions, it is
not surprising that a policy environment in which administrations
randomly decline to intervene can result in a better performance
than an environment of perfect precommitment. Still, it should be
noted that these gains are relatively small.

This last result is not really surprising when viewed from a
game theoretic perspective. If we aggregate the administrations
into a single player, then this result simply seems to imply the
dominance of mixed strategies for this player, in this particular
game. The sort of randomization considered, however, is not arbit-
rary, but corresponds roughly to the notion of "political uncertainty"
(i.e., uncertainty about who will be setting policy in the future).

The delayed information model also contrasts with the contem-
poraneous information model in terms of the effects of changes in
the A parameter on relative performance. Performance relative to
the time consistent case improves (again, P declines) as A dec-
reases in simulations 10-21.

Overall, the numerical simulations illustrate the extreme sensi-

tivity of relative policy performance to changes in the model param-
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eters and to changes in assumptions regarding the public’s infor-

mation.

Simulating the Effects of Policy

Some of the interesting time series properties of the stochastic
replanning equilibria can be readily illustrated by simulating the
contemporaneous information model for an admittedly extreme
case. Figures 7-11 depict one set of simulations for this model,
for the parameter values A = 0.5, p = 1.01, and y = 0.95. These
values were chosen so as to highlight the dynamic properties of the
model. The value of y close to 1 causes shocks to e(t) to take on
an almost permanent character, while the value of p close to 1
guarantees that potential future fluctuations in x(t) and e(t) will not
be highly discounted. The relatively small value of A indicates that
only small penalties are associated with fluctuations in the policy
instrument x(t).

Using artificial e(t) and S{t) time series, the model was
simulated for 1000 time periods, for a equal to 0.0, 0.5, and 1.0.
For graphical clarity, the resulting x(t) and y(t) series were sam-
pled at every fourth observation. Figure 7 depicts the x(t) series
for « = 1.0 and 0.5. Figure 8 shows the x(t) series for a = 0.5
and 0.0. A striking feature of these graphs is the similarity of the
x(t) series for the various values of a. In fact, the time paths for
x(t) are virtually identical across policy environments. This simi-
larity is deceptive, however. From the standpoint of the public, the
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Figure 10

Sampled y(t) Series (continued)

R e e—

s

e = T

-
T e e e e o WP

ipbpipiulpipdeletoletri ol o o sty
gl gipie e oty E

a = 0.0

a=05---

=
L ——"
et e I

sz =
e
SEZEI=s
22

112 128 144 160 176 192 208 224 240

32 48 64 80 98

16



C1S/1d X

01S 9Zh Chh BOh hiE OhE 80¢ 2l2 8£Z KOZ 0L1 921 201 B89 he 0

— 1 — [} _ [ — 1 — 1 — ] — ] — L] — L. — 1 — 1. — i ] — 1 — 1 — 1 —

Ja TN,
-
)-\ o\;\\i(\l\'lll;/lx\)’. \./(.\‘r/\\/
"= - [PV Ay DAY
s (Sl T A VS 0°'1
NN —=
-~ 2} =
e A st
o ). \\\aﬁ.zxr\l‘(\(e el Yooy o o
MAL (U2l S SULSL LW A
LR /\).\\}J RV /

0

soTaeg (1)4 9yl 103 ®iloeds pajewrlsy jo sfofq

1T @an31g



policy process x(t) becomes slightly more predictable as « goes
from O to 1. This slight increase in predictability causes the vari-
ance of the target variable y(t) to decrease as the probability of

policy continuation increases.

It is also revealing to note the manner in which this decrease
occurs. Figures 9 and 10 depict the sampled y(t) time series for
this set of simulations. In contrast to the x(t) series, the y{t)
series differ markedly across policy environments . Comparing the
cases where o = 1.0 and 0.5 (see Figure 9) indicates that the aver-
age magnitude ("amplitude") of fluctuations in y(t) increases dra-
matically as a decreases over this range. Figure 10 shows that as
a decreases from 0.5 to 0.0, the magnitude of the fluctuations
remains about the same, while the persistence of the fluctuations
increases. Figure 11 offers a comparison of the three y(t) series
in the frequency domain. For each value of @, Figure 11 shows the
log of an estimated spectrum of the (original nonsampled} y(t} ser-
ies. Although the variance or power of y(t) falls as « increases,
this reduction in power is not uniform across frequencies. As «
goes from 0.0 to 0.5, the power of y(t) apparently increases at the
higher end of the spectrum. The transition from a time consistent
to a stochastic replanning policy environment thus causes the overall
variance of y(t} to decrease, but also introduces more short term
fluctuation into this process. In the case of perfect precommitment,
the power of y(t) is uniformly low across all frequencies.

Again, these very different y(t) series were generated from
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virtually identical x(t) series. The processes that generated these
series, however, are quite different from the point of view of the
public: the higher is the value of «, the more predictable is the
course of future policy. The fact that x{t) becomes more predic-
table, however, doesn’t necessarily result in a smoother y(t) series,
at least for values of a close to 0.5. For such values of «, the
simulations show that stochastic replanning policies trade off in-
creased short term fluctuations in the target variable y(t) for re-
duced persistence of these fluctuations.

Finally, it should be noted that time series properties similar to
those described above were found in simulations of the model for
many different parameter values. However, differences among the
x(t) series tended to be greater, and among the y(t) series less, than
in the example discussed above. Intuitively, this is what one would
expect, as moving the parameters away from the extreme values
assumed for the example generally reduces the efficacy of policy
interventions. Increasing the value of A, for example, generally
has the effect of shifting the policy instrument x(t} towards O, and
thereby reduces the effect of an optimal policy on the target vari-
able y(t). Driving p away from 1 has a similar effect, since this
causes the public to discount more heavily future expected values of
x(t). Also, reducing the value of vy reduces the need for predictable
policy, as the destabilizing shocks e(t} become less predictable.



6. Summary and Conclusion

The implications of exogenous, stochastic regime turnover have
been explored for two versions of a simple model of stabilization
under rational expectations. The probability of regime turnover has
been shown to be a potentially important determinant of policy per-
formance, and of the serial correlation properties of the models’
endogenous variables. Below, two potential roles are suggested for
these models in interpreting the issues outlined in the Introduc-

L
tion.

One view would be that some dynamic game with stochastic
replanning constitutes a reasonable approximation of actual macro-
economic policymaking. This view abstracts from the credibility
issue discussed in the Introduction. Under this interpretation, the
potential gains to precommitment should be evaluated not by con-
trasting outcomes under the consistent and precommitment (a = 0
and 1) cases, but by contrasting the prevalent (1 > « > 0} replanning
and precommitment outcomes. The numerical exercises of Section
o then suggest that such gains, correctly evaluated, could be rela-

tively small if not negative.

Another interpretation would reject stochastic replanning models
as positive models of policy in favor of the time consistent model.
Because of the political necessity of replanning, however, the per-
formance of policy for some stochastic replanning model would
serve as a first best standard against which alternative policies
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could be compared. The simulations reported in Table 1 suggest
that in this case, comparisons of historical policy performance
against some replanning standard could differ significantly from
comparisons based on a precommitment standard.

Given the preliminary nature of the models considered in this
paper, the validity of either interpretation is open to question, and
other interpretations are possible.  Still, the examples pre-
sented above strongly suggest that in considering the effects of pol-
icy, environments other that pure discretion and precommitment
should be analyzed.

Suggestions for Future Research

The models of this paper represent a first attempt at analyzing
the implications of stochastic replanning in a rational expectations
policy environment. It would be clearly desirable to extend this
analysis to more complicated and presumably more realistic mo-
dels. One nontrivial extension would be to apply this paper’s meth-
ods to general linear-quadratic models. This would be a nontrivial
extension because these methods exploit the fact that for the models
considered, the optimal strategy of each administration will be
independent of initial conditions. o In more general models, such
independence is unlikely to obtain., A second extension would be to
allow for a more general probability structure for the process gov-

erning administration turnover. A third important extension would
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be to allow for reputational effects. Finally, administration turn-
over could be modeled as the endogenous outcome of a process of

rational political choice.



Notes

1.

2

See any of the nonmathematical references at the end of this
paper, e.g., Sims(1982).

. The existence of such rules clearly depends on the existence of a

policy environment that would make such rules credible.

. In Sims (1985), an example is given where a “naive" policy-

maker, using a reduced form for policy analysis, ends up
choosing policy in a socially optimal fashion. Also see Cooley,
Leroy, and Raymon (1984) for a discussion of this issue.

. This point is made by Taylor (1983). These papers also abstract

from all dynamics other than reputational effects.

. This is the feedback solution discussed by Kydland (1577) and

Basar and QOlsder (1982).

. The administration interpretation of the time consistent solution

is due to Lars Hansen. Hansen, Epple, and Roberds (1985) show
that this idea can be used to construct time consistent Stackel-

berg solutions to certain linear-quadratic games.

. A key simplifying feature of this example is that equation (1)

only admits a zero stable homogeneous solution. This means

that initial conditions can be ignored in solving the partial dif-
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10.

11.

12.

13,

ference equations that correspond to each administration’s first
order conditions (see Appendix A).

. Solutions to equation (1) are discussed by Whiteman (1983} and

Watson (1985), for the case where x{t} = O for all t. For
reasons of tractability, "bubble" or "sunspot" solutions of the sort
considered by Watson are excluded in the analysis that follows.

In the terminology of Kydland (1977), the admissible strategies
are "open loop." Other authors, e.g., Basar and Olsder (1982)
and Buiter (1981), do not allow open loop strategies to depend
on random shocks.

Readers not interested in the technical details of the solution

could skip this section, except for the statement of Theorem
1.

A linear-quadratic-Gaussian structure dees not automatically
guarantee certainty equivalence. For a useful summary of cer-
tainty equivalence results see Witsenhausen (1971).

Basar and Bagchi (1981) and Levine and Currie (1984} have
shown that certainty equivalence holds in related models (es-
sentially continuous time versions of the case a = 1 above).

See, for example, Chung (1975) or Hoel, Port, and Stone
(1972) for a treatment of Markov chains.
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14.

In Figure 35, possible nonuniqueness of Al’s strategy has been
arbitrarily resolved.

15. The value of the leader’s objective could be driven even higher if

16.

17.

18.

19.

the administrations were allowed to use "threat" or "forcing"
strategies, as in the closed loop Stackelberg game described by
Basar and Olsder (1982}. However, such strategies would seem
of limited use in macroeconomic settings and are thus not con-
sidered here.

To see this, note that the law of iterated expectations implies
that the optimal one-step-ahead predictor for x(t} will be given
by replacing S(t) with a on the RHS of equations (8) and (12).
Using the linearity of equations (9) and (13) and an induction
argument, it follows that k-step-ahead predictors of x(t) and
y(t) are linear and invariant with respect to S(t).

Sample values of the performance statistic P were generally

robust to the use of different artificial time series.

The two interpretations offered below derive from the discus-
sion by Sargent (1984a).

See, for example, the proportional taxation model analyzed by

Sargent (1984b).



Appendix A. Solution of the Contemporaneocus Information Model

Proof of Lemma 1: Differentiating J(t) with respect to x(t+],])
and y(t+j,j) yields the first order conditions

3 (t) .
— = [y(tﬂ',j) + 6(t+j,]) }aJ
oy (t+j,])

3L(t) 43 .
—— = [}\x(t-l-j,j) +p >p " Ot+ik,jk ] ad.
Ax(t+j,j) k=0

Manipulation of the above two equations yields
y(t+j,3) = Ap x(t+j,j), when j =0 (A.1)
y{t+j,j) = Ap x(t+j,j) - A x(t+j-1,j-1), when j> 0. (A.2)
The last two equations are equations (6) and (7) of the text.[]

Note that equations (A.1) and (A.2) are in fact partiel (multi-
index} difference equations, as is equation (O) of the text. This
causes the solution of the replanning models to be somewhat more
complicated than the cases where o« = 0 or 1.

Proof of Theorem !: First, it will be shown that

E, ylt+)) = Ap B, x(t+]) - ar Ep x(t+j-1) (A.3)
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for j > 1. To show equation (A.3), note that Lemma 1 implies

.
E [y(t+j,w(t+j)) | wit+j) =0, wit) = kJ

= (Ap) E [ x(t+j,wit+j)) | wt+j) =0, wit) = k] (A.4)
and |

[y(tﬂ,w t+j)) | wit+j) > 0, wit) =k]
= O E | xeriweep) | wiek) > 0, wio =k |
- \E [x(t+j—1,w(t+j—i)) | wit+j) > 0, wit) =k ] (A.5)
Now use the following facts:
E [y(t+j,w(t+j)) | wit) = k]
; E [y(tﬂ w(t+j)) | wit+i) >0,w(t )—k]Pr‘{ wi{t+3) >O|W(t):k}

+ E[y(t+j,w(t+j))|w(t+j):D,w(t):k]Pr*{ w(t+j) =0|wi(t) }

‘(A.6)
and similarly for x(t+j). This is just the law of iterated expecta-

tions.

[
f,



Pr‘{ w(t+i)=0] wi(t) = k}-‘-‘i—a for all k 2 0, and
Pr{ wittj)=1]| w k} =a. (A7)
This is a restatement of property (C1) of the text.

E [x(t+j-1,w(t+j-1)) | wit+j) > 0, w(t) = k}

E [x(t+j-i,w(t+j-i)) | wit) = k] (A.8)

That is, knowing w(t+j) > O does not provide any information about
w(t+j-1). This follows from a simple application of Bayes’ The-
orem.  Equation (A.3) then obtains by evaluating (A.6) as
(1-a) (A.4) + a (A.S) , then using (A.8).

Now, using equation (A.3), the law of iterated expectations, and
equation (1) of the text, one can eliminate the y(t) terms from equa-
tion (1) of the text to obtain

Ao E, x(bHitD) - (1+hatho?) E x(t+j)
+ aAp Et x(t+j-1) = elt+j) (A.9)
for j =1, 2, 3, »*. For a fixed value of t, equation (A.9) is a

nonstochastic (recall that e(t+j) is assumed to be known) difference
equation in Etx(t+ j) that can be solved by the methods described in
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Sargent (1979, chapter 9). The characteristic polynomial of (A.S)
is given by

1

c(z) =Nz ~- (1+>\<x+}\p2) + aApz.

It is easy to show that for a € (0,1], c(z) always admits a factori-
zation of the form

c@ = o (tciz 1) (1-co2)

where cy,c; € (0,1). (For the case a = 0, ¢c; = 0.) Imposing the sta-
bility condition of the theorem yields the following first order dif-
ference equation in E x(t+j):

E, x(t+j) = ¢z E, x(t+j-1) + Co_i)"j et/ (1-cyy)

for j 21, which has unique solution

E, x(t+)) = ¢ [x(t) - Se®)] + yJ Sel® (A.10)

where ¢= [ ¢, (1-¢1y) (i—czy—i) ]_1.

Equation (A.10) may now be used to evaluate the expectations
term of equation (3) of the text. This has the effect of eliminating
all terms involving expectations of future values of x(t+j). Per-
forming this operation yields
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yt) = by elt) + by x(t) (A.11)

where
- -1
bo = -0 “ap + (y-p)
b, = ~p-1 a,

Finally, when S(t)=1, we can equate the RHS of (A.11) and that of
equation (7) to obtain

x(t) = fo e(t) + f; x(t-1) (A.12)
where

fo= [1-000) 16, 17 007t b
1

fy = P—i [1"0\9)—1{31 1.

Similarly, when S(t)=0, equating the LHS of equations (6) and
(A.11) yields

x(t) = fyelt) . (A.13)



Equations (A.11) - (A.13) describe one solution to equations (5),
(6), and (7). Uniqueness in the class of stable sclutions follows
from the fact that (A.10) is the unique stable solution of (A.9).0



Appendix B. Solution of the Delayed Information Model

Proof of Theorem 2: Again making use of certainty equivalence,
write x(t) as x(t,w(t)) and y(t) as y{t,w(t-1)). Employing techniques
directly analagous to those employed in the contempor*anebus infor-
mation model, we can show that the first order conditions of the

time t administration’s problem are equivalent to
x(t,0) =0 (B.1)
y(t+j,j-1) = (pxa"i) x(t+j,j) - a}) x(t+j-1,3-1) (B.2)

for j 2 1. Equations (B.1) and (B.2) correspond to equations (A.1)
and (A.2) of Appendix A.

Mimicking the proof of Theorem 1, it can then be shown that
E,_yy(t+i,wit+i- 1)=pa™ ) E,_y x(t+], w(t+j))
- Ot ) By x(+), witHiL) ) (B.3)

for j21. The analog of equation (A.9) will be

(ool E,_y xtritt) - (eaatene®a ) B xietg)

+ () B x(t+j1) = elt (B.4)

%]
11]



for j20, which will have unique stable solution given by
E,_y x(t+)) = &I x(t-1) +d (3T -7t et B.5)
where d(z} is the characteristic polynomial of (B.4), with canonical

factorization d(z) = do (1-dyz Y) (1-d,z), and d =
[do (-diy) (1-dy™}) 1. Solving for y(t) yields

y(t) = my et-1) + m, x(t-1) (B.6)
where

mo = [ -p ho + (y-p) 1y 7Y

my = ‘P_ih:

) o d, gy Hy

By equating the RHS of (B.6) and (B.2), it follows that when
S(t)=1,

x(t) = go elt-1) + gy x(t-1) (B.7)

where
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go = aymo / (Ap)

and

Liam /001, 0

gt =1lp

In the case where e(t) is stochastic, it might seem that x(t)
should depend on e(t} rather than e(t-1), since the administration in
power at time t can observe eft). However, "updating" equation
(B.7) by replacing ye(t-1) with e(t) would increase the variance of
x(t) without changing y(t), since y(t) is decided before ef(t) is real-
ized. Hence such updating would be suboptimal.
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