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1. Introduction

There are two widely accepted defining characteristics of fiat money: incon-
vertibility and intrinsic uselessness. Inconvertibility means that the issuer, if
there is one, does not promise to convert the money into anything else—gold
or wheat, for example. Intrinsic uselessness means that fiat money is never
wanted for its own sake; it is not legitimate to take fiat money to be an
argument of anyone’s utility function or of any engineering production func-
tion. Stated somewhat differently, intrinsic uselessness means that one per-
son gives up goods (objects that appear as arguments of utility functions,
directly or indirectly) for fiat money only because the person believes that
someone else will subsequently give up goods for fiat money at an acceptable
rate of exchange.

The argument for intrinsic uselessness is that too much is sacrificed by
abandoning it. The principal way of abandoning intrinsic uselessness is to
make money an argument of utility functions or engineering production func-
tions. But this begs too many questions. Is it fiat or commodity money that
appears in these functions? What if there are several fiat moneys, those of
different countries? Do all appear, and if so, how? Does Robinson Crusoe
have fiat money as an argument of his utility function? And what about other
pieces of paper? Most economists would be unhappy with a theory of the
value of shares in the XYZ Corporation that starts out making such shares an
argument in utility functions. Why is it better to do this for fiat money? All of
this is to say that theories that abandon intrinsic uselessness will be almost
devoid of implications.

In contrast to intrinsic uselessness one might say that inconvertibility is
not something to be argued about. Either the institution under investigation
displays this property or it does not. But some care must be taken. As I use
it, inconvertibility means that it is known with certainty that the issuer does
not now and will never in the future stand ready to convert fiat money into a
commodity. Viewed this way, fiat money systems have, I think, been rare.
Specie suspensions during wars do not in general qualify. In most such
instances—for example, Great Britain during the Napoleonic wars and
World War I and the United States during the Civil War—-convertibility was
subsequently restored. That being so, it seems sensible to suppose that indi-
viduals had always attached some positive probability to such restoration,
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which is enough to violate what I mean by inconvertibility. But now restora-
tion of convertibility seems unlikely. So, and perhaps for the first time,
theories of inconvertible money are of practical importance.

If inconvertibility and intrinsic uselessness are taken seriously, there is an
immediate and long-standing problem: the devices usually invoked to prove
that an object has value in equilibrium—basically, that supply is limited and
that utility is increasing in the amount consumed—cannot be used for fiat
money. Since getting fiat money to have value is necessary for any nontrivial
theory of it, three options seem to be available: first, one can abandon incon-
vertibility and intrinsic uselessness; second, one can impose legal restrictions
that give fiat money value; and third, one can attempt to model explicitly the
notion that fiat money facilitates exchange. For good reasons, monetary
theorists are almost unanimous in pursuing the third option.

In order to pursue the notion that fiat money facilitates exchange, one
must abandon the costless multilateral market clearing implicit in the Walras-
ian (or Arrow-Debreu) general equilibrium model. Since exchange works
perfectly in that model, there can be no role for a device that is supposed to
facilitate exchange. In order to get a theory of fiat money, one must gener-
alize the Walrasian model by including in it some sort of friction, something
that will inhibit the operation of markets. On that there is agreement.

But what sort of friction? On that there is no agreement, which is to say
there is no widely accepted theory of fiat money. I will try to alter this
situation by arguing that the friction in Samuelson’s 1958 consumption loan
model, overlapping generations, gives rise to the best available model of fiat
money.

That this needs arguing is clear. It is now 20 years (a generation!) since
Samuelson described the role of fiat money in the overlapping generations
model. Yet neither he nor most economists seem to take it seriously as a
model of fiat money. (See, for example, Samuelson 1968.') One claim seems
to be that the overlapping generations friction accounts for the store-of-value
function of money only. As a consequence, it is argued, models built on it are
quite misleading. In particular, the tenuousness of equilibria in which fiat
money has value in models built on the overlapping generations friction is
due, according to this claim, to the fact that this friction does not account for
the medium-of-exchange role of money. But this claim fails to recognize that
tenuousness is an implication of the two defining properties of fiat money,
inconvertibility and intrinsic uselessness, and not of the overlapping genera-
tions friction.

One of the most important, although obvious, implications of inconvert-
ibility and intrinsic uselessness is that if fiat money has value in an equilib-
rium, then there cannot be another asset with a rate-of-return distribution in
that equilibrium which dominates that of fiat money. For suppose this were
not true. Then someone gives up goods for fiat money in this equilibrium
even though the person could instead buy an alternative asset that in all
circumstances would give more goods subsequently. Why? Any reason that
one could give would violate intrinsic uselessness.

Another implication says, in effect, that an economy can work (although
maybe not so well, as we will see) without fiat money, or equivalently,
without it having value. In other words, there are nonmonetary equilibria,

'Author names and years refer to the works listed at the end of this book.
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equilibria in which fiat money is without value at any date.

These implications of inconvertibility and intrinsic uselessness imply
that monetary equilibria, equilibria in which there is valued fiat money, are
tenuous.

Also implicit in the definition of fiat money is the idea that in an equilib-
rium with valued fiat money its value exceeds its cost of production. But this
rules out a competitive monetary equilibrium with free entry into the produc-
tion of fiat money. Put differently, wealth is greater in the monetary equilib-
rium than in the nonmonetary equilibrium. Somehow this wealth must be
allocated among individuals. The market cannot do that.

All these problems, if problems they be, show up in the models built on
the overlapping generations friction. But all of them—absence of dominance,
existence of a nonmonetary equilibrium, and wealth creation—have to be
addressed by any model of fiat money that maintains inconvertibility and
intrinsic uselessness. The fact that they come up in models built on the
overlapping generations friction is not, therefore, a defect of that friction.

In a way, it is precisely those problems that give rise to a rich theory of fiat
money. That is the message of what follows and constitutes my principal
argument for taking seriously models built on the overlapping generations
friction. I will show how models built on this friction can be made to confront
virtually every long-standing problem in monetary economics.

The first problem I take up—and perhaps the most basic—concerns the
efficiency of fiat and commodity money systems. One notion is that fiat
money helps by freeing resources that would otherwise be used to produce a
commodity money. In section 2, [ show how models built on the overlapping
generations friction give precise content to this notion. Roughly speaking,
the results tie the existence of an optimal fixed-supply monetary equilibrium
to the nonoptimality of the nonmonetary equilibrium.

The second problem I address concerns fiat money—financed deficits. In
section 3, I show how overlapping generations models allow us to present
simple public finance analyses of fiat money issue as a taxation device. Not
surprisingly, fiat money issue turns out to be an excise tax.

The third problem I consider concerns paradoxical time series correla-
tions between the quantity of fiat money and other variables. In section 4, |
review, by way of a simple example, Lucas’ (1972) incomplete information
theory of nonstructural time series correlations. This theory shows what
happens if information barriers (another friction?) force individuals to make
imperfect inferences from observations on the equilibrium value of fiat
money. The theory is the key building block in the current attempt to bring
cyclical phenomena within the purview of ordinary economic theory. An
understanding of Lucas’ theory forces one to a radical reinterpretation of
many of the macroeconomic time series correlations that are currently
treated as structural.

The fourth problem I deal with concerns open market operations, or
monetary policy narrowly conceived. The main result comes from nothing
more than a careful consolidation of the balance sheets of the monetary
authority and the public: without additional frictions, the portfolio of the
monetary authority does not matter even for the value of fiat money. What
counts is asset creation and destruction, not asset exchanges, or in other
words, outside money, not inside money, or in still other words, fiscal policy,
not monetary policy.
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The fifth and last problem [ take up concerns country-specific fiat
moneys. In section 6, 1 summarize my work with Kareken (1978) on the
relationship between national budget policies and international monetary re-
lationships. The theme, which grows directly out of the defining properties of
fiat money, is that while one may get a theory of one valued fiat money by
explicit modeling of how fiat money facilitates exchange, in order to get a
theory of several valued fiat moneys one must in addition invoke legal re-
strictions (other frictions?) that prevent one fiat money from being substi-
tuted for another. One implication is that a laissez-faire international mone-
tary system with many national fiat moneys makes no sense.

2. Efficiency of Fiat and Commodity Money Systems

As noted above, one widely held view is that fiat money is an efficient form of
money; since fiat money can be produced costlessly, there is a gain from
using it instead of something else that is both costly to produce and has
alternative uses. (See Friedman 1953, pp. 204-50; 1960.) While this seems
plausible, several questions must be answered. Since the gain does not exist
in every economy—for example, it does not exist in the world of the Walras-
ian general equilibrium model or in that of Robinson Crusoe—in what sort of
economies does it exist? And does the gain depend on how fiat money is
managed? I will provide answers to these questions in the context of a par-
ticular overlapping generations model and will then consider generalizations
of it.

2.1. Commodity Money Equilibria

Before describing the model, a confession is in order. I suggested above that
while a model may or may not have a monetary equilibrium, one in which fiat
money has value, it will, in general, have a nonmonetary equilibrium, one in
which fiat money has no value. The confession is that I will not distinguish
between nonmonetary equilibria and commodity money equilibria. For me
they are simply different names for the same thing.

While any given model may have several nonmonetary equilibria, there
will in general be no basis for classifying these into two distinct classes—one
called commodity money equilibria and the other called, say, barter equilib-
ria. (This is true vacuously if the given model has a unique nonmonetary
equilibrium.) Nor is it obvious that anything is to be gained from attempting
to classify the nonmonetary equilibria of different models into those that, in
some sense, look like commodity money equilibria and those that look like
barter equilibria. True, some models may display transaction patterns such
that no object is playing a special role in exchange (all objects have roughly
the same transaction velocity), while other models may display patterns such
that one object has a quite special role in exchange (its transaction velocity is
much higher than that of any other object). But most models with friction are
likely to display some intermediate pattern in which a ranking of objects by
transaction velocity produces a hierarchy. I doubt that a fruitful qualitative
distinction will emerge from attempting to classify models by the nature of
their transaction-velocity pattern. Nor, as | hope to demonstrate, is it fruitful
to group together all objects with transaction velocities greater than some
number and to call the collection money.

2.2. A Model With Constant Returns-to-Scale Storage
This model, a slight variant of the one studied by Cass and Yaari (1966a), is a
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discrete-time, one-good economy. At any date ¢, the population consists of
N(1) young (or age 1), the members of generation ¢, and N(¢—1) old (orage 2),
the members of generation t—1. Each young person at t maximizes u[c*(#)];
(1) = [cf(?), cf(1)], where c}(1) is age j consumption of member /4 of gener-
ation ¢, and u is twice differentiable with convex upper contour sets. The ¢;
are normal goods, and w,/u,, the marginal rate of substitution function, ap-
proaches infinity as ¢;/c, approaches zero and approaches zero as c¢,/c, ap-
proaches infinity. Each old person at f maximizes cg (z—1).

Each young person is endowed at ¢ with y units of the consumption good.
The good may be exchanged, consumed, or stored; if k = 0 units are stored,
the result is xk units of z+1 consumption where x > 0. I assume that N(¢) /
N(t—1)=n>0forall z.

I will study the evolution of this economy from some arbitrary initial date
labeled r=1 for convenience. In the aggregate, the r=1 old, the members of
generation 0, are endowed with K(0) = 0 units of the consumption good and
with M(1) units of fiat money.

For all z, M(¢), the post-transfer time ¢ stock of money, obeys M(¢) =
zM(t—1), z > 0. The time ¢ transfer (or tax), (z— 1)M(¢—1), is divided equally
at time t among the N(¢—1) members of generation t—1. The handouts are
fully anticipated and are viewed as lump-sum, as not dependent on saving or
portfolio behavior.

Our two main questions about this economy are, Under what circum-
stances does a monetary equilibrium exist? and When it exists, under what
circumstances does it improve matters?

2.2.1. Equilibria
Let p(#) be the price of a unit of fiat money at time ¢ in units of time ¢
consumption. Then, letting c(#) = [..., (?), ...1Lb k(¢) = [..., B (¥), ...}, m(t) =
[..., m*(?), ...] be the vectors of generation ¢’s lifetime consumption, time ¢
storage, and time ¢t money purchases, respectively, an equilibrium is a se-
quence [c(t—1), k(8), m(¢), p(1)], t=1, 2, ... that is consistent with
e (1), (1), and k*(r) being optimal for the perfect-foresight competitive
choice problem of the young to be described below
» c}(0) being maximal for the (trivial) competitive choice problem of the
current old
* M(#) = Zm*(1), which, like all other unindexed summations, is over all &
in generation ¢.

2.2.2. The Choice Problem of the Young

The young choose nonnegative values of c*(?), k*(¢), and m"(¢) to
maximize u[c*(¢)] subject to
(1) () + kD) + p(H) m(t) —y<0
(2 cf(t) — xk*(2) — p(t+1) {m"() + (z—=1D) M(5) | IN(5)]} <0
forp(t) =0and p(t+1) = 0.

The necessary and sufficient conditions for an optimum are (1) and (2) at
equality and

3) w—fr=<0 with = if ¢(£) > 0
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4) u, — <0 with = if ¢(£) > 0
(5) - +xfp=<0 with = if k*(£) > 0
(6) — 0 p() +EEp(t+1) <0 with = if m?(#) >0

where {7 is the nonnegative multiplier associated with constraint j and where,
by our nonsatiety assumption about # and the boundedness and nonempti-
ness of the feasible ¢*(7), £# > 0 and finite in any equilibrium.

2.2.3. Nonmonetary Equilibrium

By definition, p(#) = 0 for all ¢ in such an equilibrium. This implies that
(3)-(5) hold with equality. So, letting v[c*(#)] = w/u, be the marginal rate of
substitution function, which by normality of the ¢;(¢) satisfies v; < 0, v, > 0,
(3)—(5) give us

7N vl (D] = x.

Thus, there is a unique k*(#), say, k* for which (7) holds. [To prove this, use
(1) and (2) at equality to write the c¢P(#) as functions of k*(1).]

2.2.4. Monetary Equilibria
By definition, p(¢) > 0 and m?(¢) > 0 for some ¢ in such an equilibrium. But
by (6), this implies p(¢) > 0 for all z. Therefore, by (3)-(6)

8) vid(Dl=pt+D)/p(t) =x forall ¢

is necessary and sufficient in order that choices be optimizing in a monetary
equilibrium. I can now prove

PROPOSITION 1. xz/n < 1 is necessary and sufficient for the existence of at
least one monetary equilibrium.
Proof (Necessity). Suppose to the contrary that there is a monetary equilib-

rium and xz/n > 1. Then, by the rule generating M(¢) and the equilibrium
condition, M(f) = N(¢) (), where i () = Zm*(t) / N(t), we have for all ¢

9 p(t+]) _ M@+ Dp@+D) _N@+Dm@+Dp @+ _ ng(t+1)
p(D) ZM(1) p(1) ZN(8) m(1) p(t) ©ozq(®)

where g(f) = p(1) 7 (£). Then, by the inequality part of (8), we have for all #
(10 q(t+1)/ g(ty = xz/n> 1.

But since ¢*(t) = m*(t) p(t) < y for all # and ¢, the same bound applies to g(?).
And no bounded ¢(¢) sequence can satisfy (10).

Proof (Sufficiency). 1 will prove that xz/n < 1 implies the existence of a
monetary equilibrium with k() = 0 and g*(t) = g(¢) forall h and t = 1. By
(1), (2), and (8), it suffices to find a positive g(f) sequence that satisfies

(11) vly—q(1), g(++1) n] = [q(t+ 1)/ g(H] (nlz) = x.

If there is a g € (0,y) such that g(¢) = g(¢+1) = g satisfies the equality part of
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(11), then the inequality part is implied by xz/n < 1. But the existence (and
uniqueness) of such a g, denoted g* is trivial. Let v¥(g) = v(y—g, ng). Then
v* is continuous (strictly increasing), with 0 = lim v*(g) as g—0 from above
and « = lim v¥(q) as g—y from below.

2.2.5. Other Monetary Equilibria

In the borderline case xz/n = 1, there exists a continuum of monetary
equilibria. As is easily shown, if xz/n = 1, then for any ¢ € (0, g*), there
exists a £ € (0, k*) such that ¢*(¢) = g, k*(¢) = kforallt = land his a
monetary equilibrium.

In the rest of this paper, special attention will be paid to monetary
equilibria that are the analogues of the g* and 4 equilibria, equilibria that I
call stationary. But there are, in general, other monetary equilibria. Without
additional restrictions on preferences, there may exist nonconstant g(?) se-
quences that satisfy (11). Also, independent of whether preferences are
further restricted, if xz/n < 1, then for any g(1) € (0, k%), there exist monetary
equilibria with g*(1) = g(1) for all # and g"(¢t+1)/g"*(#) = xz/nforall t = 1 and
h. This is to say that if individuals in every period act on the basis of the view
that per capita real money holdings decline exponentially at the rate xz/n,
then there are equilibria in which this occurs.

The existence of multiple perfect-foresight or rational expectations
equilibria has been taken by some to be a weakness of this equilibrium con-
cept. (See Shiller 1978.) But a weakness relative to what? In models of
money, actions depend on beliefs about the future. One option is to leave
matters there; actions and, hence, equilibria depend on unexplained beliefs.
By requiring that beliefs be tied to objective features of the environment,
rational expectations equilibria allow us to focus on a subset of the equilibria
consistent with all possible unexplained beliefs. The fact that this subset
turns out to contain more than one equilibrium does not provide an argument
for abandoning the rational expectations equilibrium concept. Instead, it
suggests that we look for a principle that justifies focusing on a subset of the
rational expectations equilibria. We know already that we will not be able to
justify focusing on equilibria not in the subset of rational expectations
equilibria.

One argument for focusing on the k¥ g* and ¢ equilibria starts out by
requiring that equilibrium values depend only on relevant state variables, or,
equivalently, by requiring that agents forecast on this basis. In the model we
are studying, each member of generation ¢ for ¢ = 1 must forecast p(¢+1). But
since the evolution of the money supply and the population are known, it is
enough to forecast g(¢+1). If each young person acting like a competitor
responds to the calling out of an arbitrary current price p(¢) = 0 with a money
demand based on a forecast of p(¢+1) that satisfies g(¢+1) = g(¢), then such
demands are consistent with the k¥ g* and g equilibria only. This forecasting
scheme must be justified by some appeal to relevant state variables; since the
relevant physical environment for each young person in this economy does
not depend on when the young person appears, the person’s real portfolio
behavior ought not to depend on time. In monetary equilibria other than the ¢
and g* equilibria, the variable time plays a significant role.

2.2.6. A Stability Result
I will now present for this model a sort of stability result adapted from the
argument presented by Lucas and Prescott (1974).
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First note that without additional assumptions, the equality part of (11) is
equivalent to

(12) q(1) = Hlg(t+1)]

where H, a continuous function, is defined on (0,»), is such that 0 < H < y,
and has a unique fixed point, denoted §. (The range of H is limited to the
shaded area in Figure 1.) Itis an implication that H'(g) < 1. For the stability
argument I assume f< H' < 1 for some { € (—«, 1), which aside from
boundedness is to impose globally the restriction on H' that necessarily holds
at the fixed point.

For the forecasting scheme, I assume that every member of generation 1
acts on the basis of some positive forecast of p(2), denoted p(2), and that
every member of generation ¢ = 2 acts on the basis of a point forecast p(¢+1)
given by

(13) P+ =Ap )+ (1A-NpD](n/z), AE[O,D).

Here generation ¢ = 2 forms a forecast of p(#+1) by taking a weighted aver-
age of the previous generation’s forecast of p(¢) and the realization of p(¢) and
““updating’’ it. The ‘‘updating’’ is accomplished by multiplying by n/z. Note
that the scheme discussed above is the special case A = 0. In the Appendix I
prove

PROPOSITION 2. If forecasts are given by (13) for some p(2) > 0 and H [see
(12)] satisfies H' € (£, 1) for some {&€(—w, 1), then

Figure 1

The Range of H
Fnh

D e

Ft+1)
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a. Ifxz/n < 1, thenlim g*(t) = g*

b.Ifxz/n = 1 and @(2) = q* thenlim g*(t) = g*
c. Ifxz/in = 1and q(2) < q* then g"(t) = g(2)
d. Ifxz/n > 1, thenlim q'(t) = 0

where q(2) = p(2) M(2) | N(2).

This proposition establishes that the g* and 4 equilibria—when they
exist—and the k* equilibrium—when the g* and ¢ equilibria do not exist—
are in a sense robust with regard to mistakes about the future.

It is worth emphasizing, though, that while the proposition would no
doubt hold for some ways of generalizing of (13), the ‘‘updating’® by n/z
seems essential. Such ‘‘updating’’ must be justified by appealing to relevant
state variables. Thus, this stability argument cannot be used, for example, to
dispose of equilibria with g*(t+1) / g*(t) = xz/n when xz/n < 1. For if (n/z) in
(13) is replaced by x, then the same sort of stability argument could no doubt
be made for those equilibria.

2.2.7. Optimality

Letting C;(¢) be total age j consumption of members of generation ¢ and
K(t) = 0 be the total of time ¢ output that is stored, a consumption
allocation—c»(0), c(1), ¢(2), ..., c(¥), ...—is feasible if for all ¢t = 1 there
exists K(#) = 0 that satisfies

(14) Gi()) + K() + C(t—1) S N(t)y + xK(z—-1)

with K(0) given by initial conditions.

An allocation with a bar (7) over it is Pareto superior to one with a caret
(") if e(0) = é2(0) and ulec*(H)] = ulé¢*(H] for all # and all ¢ = 1 with strict
inequality somewhere. An allocation with a caret is Pareto optimal if there
does not exist a feasible allocation that is Pareto superior to it.

Our question about the gain from using fiat money is answered in part by
the following propositions.

PROPOSITION 3. Ifx > n, then any equilibrium allocation is optimal.

PROPOSITION 4. [fx < n, then the k* (the nonmonetary) and the § equilibria
are nonoptimal.

PROPOSITION 5. [fxz/n < Il and 7 < 1, then the q* equilibrium is optimal.
PROPOSITION 6. Ifxz/n < I and z > 1, then the g* equilibrium is nonoptimal.

The proofs of Propositions 3 and 5 are given in the Appendix.

Proof of Proposition 4. Let (&, T) and k > 0 be the equilibrium lifetime
consumption vector and storage of each member of generation ¢ = 1 in any
given k* or 4§ equilibrium. By feasibility [see (14)] these quantities satisfy

G +o/nsy+ (x/n—1)k.

Since x < n, it follows from (14) that the same consumption allocation for
members of generation ¢ = 1 is feasible with K(#) = 0 for all ¢ = 1. But this
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makes it possible to give more to members of generation 0 at t = 1 because in
any k* or 4 equilibrium, total consumption of generation 0 at ¢ = 1 satisfies

N() & + N() k + Cx(0) = N(1)y + xK(0)

while under the proposal it satisfies the same equation with k replaced by
Zero.

Q.E.D.
Proof of Proposition 6. By (14), if K(#) = 0 for all ¢ = 1, the class of feasible
consumption allocations such that ¢*(#) = (¢, ¢2), a constant for all 2 and ¢ =
1,is given by

(15 ¢+ cy/n=<y.

It follows that ¢*(r) for all & and ¢ = 1 in any g* equilibrium satisfies (15)
and with equality. Denote ¢(¢) in this equilibrium by (cf, c¥). It is also the
case [see (1) and (2)] that (c¥, c¥) is preference-maximizing in the set

(16) ¢ Fe(zn)<sy+(z—1)q*

In Figure 2, let (&, é;) be the preference-maximizing point that satisfies
(15). Transitivity and the fact that the boundary of (16) is steeper than that of
(15) imply that (c¥, c¥) lies northwest of (&, é&). By revealed preference,
then, (&, é;) is preferred to (¢ c¥). And since c(¢f) = (é,, &) forall hand r =
1 is feasible with K(#) = O for all ¢ = 1, it is feasible under the caret allocation
to have total consumption of generation 0 at t = 1 satisfy

Cx(0) = xK(0) + N(1) (y—¢1) > xK(0) + N(1) (y—c}) = C§(0)

where C#(0) is total generation 0 consumption at = 1 under the g* equilib-
rium.
Q.E.D.

Propositions 3-6 imply no connection between the path of the value of fiat
money in an equilibrium and the optimality of that equilibrium. Thus there
may be an optimal monetary equilibrium with a declining value of fiat
money—for example, if x < n < z < 1—and there may be a nonoptimal
monetary equilibrium with an unchanging value of fiat money—for example,
if z = n > 1> x. What counts is the path of the quantity of fiat money.

Propositions 3—6 suggest that the quantity of fiat money should not be
increased. For those propositions imply that if z =< 1, then an optimal mone-
tary equilibrium exists whenever the nonmonetary is nonoptimal. If we limit
consideration to z = 1, a fixed money supply, then the converse is also true.

But several comments are in order. First, note that we have studied
changes in fiat money brought about in a particular way. These changes
satisfy

=7(t) = p(1) [M(8) — M(t—D] = p(D)(z—1) M(1—1)
where 7(?) is the national income accounts definition of taxes minus transfers

in real terms and where the tax or transfer is lump-sum.
So this conclusion holds for fiat money supply increases that come about
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Figure 2
The Nonoptimality of z > 1

CI A

y + (z—hg*

c¥ Ca \ ny [y

(n/2)ly +(z— 1) g*]

by way of deficits. They are most definitely not to be confused with changes
that come about through open market operations, a class of policies dis-
cussed in section 5. The conclusion also holds only for purposeless deficits, a
point taken up in section 3.

That the tax or transfers are viewed by individuals as unrelated to their
saving and portfolio choices is also critical. To take an extreme example, if
the scheme is instead one in which each person knows that her or his money
purchases when young, m*(¢), say, will be augmented by (z—1) m”*(t) when
old, then, as is well known, the equilibrium consumption allocation does not
depend on z.

[t must also be emphasized that we have studied only very special time
paths of M(z). In a sense, only the limiting behavior of the supply of fiat
money is crucial. For, still considering the same transfer mechanism,
suppose

oy M(—1) t=1,2,...,T
M) =
2o M (t+1) t=T+1.
Then it is easily shown that Propositions 5 and 6 hold with z replaced by z,
and g* replaced by a monetary equilibrium path with ¢*(#) = g* forall hand ¢

=z T. In other words, both the existence and optimality of monetary equilibria
depend only on the limiting behavior of the supply of fiat money. (The equi-
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librium consumption allocation does, however, depend on z;.)

Finally, this model does not deal kindly with the prescription that money
ought to be managed so that its rate of return is equal to that on real capital.
In most models, this is not even a well-defined prescription since the equilib-
rium rate of return on capital depends on the monetary policy followed? In
this model, the technology is such that this prescription is well defined;
namely, set z so that xz/n = 1. But if x < n, then such a policy guarantees that
any equilibrium is nonoptimal.

2.3. Absence of a Dominating Asset and the Sign of the Real Rate

of Interest
In the model so far analyzed, individuals hold a single asset except in the
borderline case xz/n = 1. In any case, individuals do not diversify in a de-
terminate way. It is important to note that the basic message of Propositions
1-6 carries over to other models.

Thus suppose that the gross return on storage x is random in the following
way. The gross return on the consumption goods stored from ¢ to t+1 is x(¢)
> 0 where x(¢) is a drawing from a probability distribution. For some utility
functions, probability distributions, and values of » and z, there exist mone-
tary equilibria with equilibrium portfolios that are diversified in a determinate
way. (See Bryant and Wallace 1979b.) More to the point, though, versions of
Propositions 1-6 can be expected to hold? And, for any z and n, if the
probability distribution of returns to storage is too favorable, then there will
not exist a monetary equilibrium. Thus the absence of dominance require-
ment still obtains.

Since this requirement is foreign to so many so-called models of money, 1
want to comment on it in some detail. And to simplify the discussion, I will
abstract from growth.

Economists are used to working with models in which there are real assets
with a positive net yield in equilibrium. Put differently, most economists
seem automatically to assume a positive real rate of interest implied by the
presence of something like the ‘‘land”’ of the Hecksher-Ohlin model (Henry
George land)—a uniform, productive, nonreproducible form of capital? But
real land is quite different from the land of the Hecksher-Ohlin model. If it
were not, why have titles to physical quantities of land rarely if ever served
as commodity money? (And why does it prove so difficult to implement
Henry George’s tax?) Indeed, one suspects that the transaction velocity of
real land is not very high (relative, say, to that of shares in GM). The point,

2Tobin’s (1965) is one of the first models with this property. The model described in the text
could easily be converted to one in which the equilibrium rate of return on storage of the consump-
tion good depends on the monetary policy followed. One need only assume that x depends on the
aggregate amount stored.

3A model that allows for intergeneration risk sharing via markets arises from assuming that
generation ¢+ 1 appears prior to the realization of x(#). One that precludes such risk sharing arises
from assuming that the realization of x(f) occurs after generation 7—1 disappears and before
generation t+ 1 appears. Moreover, since in the latter instance, the young of generation ¢ maximize
expected utility conditional on x(¢) while in the former they maximize unconditionally, the defini-
tion of Pareto superiority should take this difference into account. (See Muench 1977.)

I suspect that Muench’s result in his appendix on the nonoptimality of nonstochastic growth
rate rules according to his conditional Pareto optimality criterion is due to his scheme for allocat-
ing old people across markets. This scheme is not necessarily part of Lucas’ model.

*For a detailed model of traded land of this sort, see Kareken and Wallace 1977.
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of course, is that real land is nonuniform, is reproducible, and may not
be productive. To abstract from these features for some purposes may be
harmless. To abstract from them in thinking about fiat money is probably
disastrous.

Also, one should not be misled by the role of physical appreciation in the
model analyzed above. In that model x > n is enough to drive out fixed-
supply fiat money. But this does not mean that the existence of any good that
appreciates physically would do. The x > »n results found above depend on all
aspects of the model—that there is only one good, that the population and its
endowment of that good are nonrandom, and so on. Physical appreciation
does not imply dominance of fixed-supply fiat money if there are other
sources of supply and demand disturbances that in a multigood model make
the price of the physically appreciating good random. Thus, for example, the
possibility of gold discoveries makes gold a less perfect commodity money
than would otherwise be the case.

All of this is not to say that the world we live in, without various legal
restrictions, necessarily has room for valued fixed-supply fiat money. It is
meant to suggest that the possibility cannot be easily dismissed by casual
empiricism that appeals to the existence of a positive (net of growth) real rate
of interest given by the technology. Hahn dismisses the possibility in his
discussion of the overlapping generations model when he says (1973a, p.
232), ““But money is not the only means of storage nor the only costless
means (recall Keynes’s remarks on land).”’

2.4, Private Borrowing and Lending and So-Called Inside Money

Models built on the overlapping generations friction imply a sharp distinction
between what used to be called inside money and outside money. 1 will
present one aspect of this distinction here by considering a version of the
model we have been studying that has room for private borrowing and lend-
ing. Another aspect of this distinction will come up in the discussion of open
market operations.

I will proceed by describing an example. Let n = z = 1 (an unchanging
population and money supply), x = 0 (no storage), and let generation ¢ consist
of two groups: Ny(#) = aN and Ny(#) = [1—-a] N, 0 < a < 1, where k € Ny(1)
is endowed with y units of the consumption good when young and & € N,(¢) is
endowed with y units when old. For all # and ¢ = 1, assume that u[c*(f)] = ¢
(kD).

A quick route to the study of equilibria for this economy analogous to the
k* g* and g equilibria is to find equilibria consistent with there being a single,
unchanging equilibrium gross rate of return on saving denoted R. In such an
equilibrium we have, for the logarithmic utility function,

7 W(y—s,Rs) =Rs,/(y—s) =R
(18) V(—82,y + Rsz) =(y + Rs2)/(—s3) =R
where v = u; / u, and s; is real saving of each member of group N;.
A nonmonetary equilibrium of this type must satisfy (17), (18), and as, +
(1—a) 52 = 0, the last condition being the nonmonetary equilibrium condition

for this economy: net saving must be zero. Clearly the solution is unique and
implies R = (1—a) / aand
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iy/2, y(1-a) / 2a] ifhEN,
(=
lay/2(1—a), y/2] if h € N,.
The proofs of Propositions 3 and 4 imply that this equilibrium is optimal if «
=< 1/2 and nonoptimal otherwise. Those proofs apply because in terms of
resources and preferences this economy is a special case of the one studied in
those proofs.

A monetary equilibrium consistent with an unchanging rate of return must
satisfy (17), (18), R = 1, and as; + (1—a) s, > 0, the last condition being a
positive net saving requirement. Since s, = —s, = y/2 at R = 1, this exists if
and only if & > 1/2. Moreover, p(f)M, the equilibrium aggregate real value of
fiat money is Nias, + (1—a) s;] = y(2a—1) N/2. Clearly, when this equilib-
rium exists, it is optimal.

Now, suppose that there are K such economies identical except that 1/2 <
oy < a < ...< ag < 1. In particular, let the fixed supply of fiat money be the
same in all these economies.

Viewed as a cross section, then, the price of fiat money varies directly
with ax. And since M/N, the per capita supply of fiat money, is the same for
all these economies, it necessarily bears no relationship to the equilibrium
value of p(1#) in the different economies. But if for some reason we try to find
some nominal asset total that is related to p(f) across these economies, then
we will succeed. In a monetary equilibrium, members of group N, in the
aggregate in economy k hold assets with real value of a; Ny/2. Therefore, the
nominal value of their assets is M/ (2—a; 1), real assets divided by the price of
fiat money in economy k. This nominal asset total is decreasing in ay, as is
1/p(2), the price level.

It is also the case that similar relationships can be generated for the time
paths of asset totals and the price level in a single economy by studying
economies in which «(#) varies through time.

But what is to be inferred from such relationships? The economy just
examined is one in which members of group 1, the only holders of assets, are
indifferent between holding fiat money and holding promises of members of
group 2. (It is, of course, easy to destroy this indifference. One way is to
make the endowment of group 2 random.) But so what? That does not justify
aggregating the two into something called M; and ignoring the distinction
between fiat money and the debt of group 2. Since versions of Propositions
3-6 apply to this class of economies, the distinction is critical. The point, of
course, is that « influences the demand for fiat money in a way not all that
different from the influence exerted by N(#) or x in the model of section 2.2.
Even though variations in the demand for fiat money affect the value of a
fixed stock of it, no response in the form of a value of z # 1 is called for.

3. Fiat Money Issue as Taxation

One of the basic propositions of public finance asserts that if endowment
taxation is costless, then it is best. I will begin by establishing a version of
this proposition for a no-storage (x=20) version of the model studied in section
2.2.

PROPOSITION 7. If N(t)By for 0 < B < I can be raised each period through
Sfiat money issue, then with costless taxation of endowments there exists a
monetary equilibrium with a constant money supply that is Pareto superior to
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any stationary equilibrium with N(t)By raised through fiat money issue.

Proof. Let (é,,&;) be the g* equilibrium allocation with a fixed money supply
and with each young person subject to endowment taxation of S8y. It follows
from (1) and (2) that (&,é&,) satisfies

(19) ¢ +ca/n<(1-B)y

with equality and is preference-maximizing in this set. Let (¢,c.) be any
stationary equilibrium with N(#)8y raised through fiat money issue. [Bryant
and Wallace (1979a) prove that the existence of any equilibrium with N(H)B8y
raised through fiat money issue implies the existence of a stationary equilib-
rium in which this occurs.] By feasibility (¢, ;) also satisfies (19). And being
an equilibrium, it satisfies (19) with equality and, by (1) and (2), is
preference-maximizing in the set

(20 e+t c/R<y

where R equals p(¢+1)/p(1), a constant in a stationary equilibrium.

But these facts imply that (é,,&,) does not satisfy (20), which is to say that
(¢1,C») lies northwest of (&;,&,). (See Figure 3.) If this were not true, tran-
sitivity or smoothness of preferences would be violated. It follows that the
caret allocation is Pareto superior to the bar allocation because (,&;) is
preferred to (¢,,¢,) by all members of all generations ¢t = 1 and & < ¢ implies

Figure 3
Costless Endowment Taxation
vs. a Fiat Money-Financed Deficit
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that the current old get more under the caret allocation than under the bar
allocation.
Q.E.D.

Note, of course, that there may not be such a bar allocation and that there
may be more than one. (For an excise tax on any commodity, there may be
no tax that raises a given revenue or there may be many.) Note also that
although in this simple model fiat money issue is a tax on saving, the nonop-
timality of such taxation does not require that saving depend on the rate of
return in any systematic way. In particular, the proof holds for a Cobb-
Douglas utility function which implies no dependence of saving on the rate of
return. Nor does the nonoptimality depend on there being inflation in the
sense of a falling value of fiat money. But if there is an equilibrium bar
allocation, then the equilibrium value of R is less than n. Thus, the growth-
corrected rate of return must be negative. If it were not, the government
could not succeed in financing its deficit.

Of course, in general, fiat money issue is not a tax on all saving. It is a tax
on saving in the form of money. But it is important to emphasize that the
equilibrium rate-of-return distribution on the equilibrium portfolio does de-
pend on the magnitude of the fiat money—financed deficit. This is true, for
example, in a model with a risky real asset that gives rise to diversified
equilibrium portfolios and is true in a model in which the rate of return on
money is random because the size of each generation is random.

In all these models, the real rate-of-return distribution faced by individ-
uals in equilibrium is less favorable the greater the fiat money—financed defi-
cit. Many economists seem to ignore this aspect of inflation because of their
unfounded attachment to Irving Fisher’s theory of nominal interest rates.
[According to this theory, (most?) real rates of return do not depend on the
magnitude of anticipated inflation.] The attachment to Fisher’s theory of
nominal interest rates accounts for why economists seem to have a hard time
describing the distortions created by anticipated inflation. The models under
consideration here imply that the higher the fiat money—financed deficit, the
less favorable the terms of trade—in general, a distribution—at which pres-
ent income can be converted into future income. This seems to be what most
citizens perceive to be the cost of anticipated inflation.

Of course, Proposition 7 is only the start of an analysis of fiat money issue
as a taxation device. The modern public finance literature often starts by
ruling out endowment taxation3 And, as has often been noticed, if all taxes
are distorting, then the optimal tax structure may involve taxation through
fiat money issue.

A simple way to amend the model of section 2.2 to allow for this possibil-
ity is to impose costs of raising revenue through endowment taxation. Thus
(é,8,) in Figure 3 is not feasible if it is assumed that (8+g)y must be turned
over by each young person in order that the government get By—gy > 0
being enforcement costs. It follows, then, that the fixed-supply—monetary-
equilibrium allocation satisfies (19) with strict inequality and that no qualita-
tive comparison between endowment taxation and fiat money—issue taxation
is possible. Indeed, it is easy to make assumptions that guarantee that the
optimal tax structure involves some of both forms of taxation. .

5See Helpman and Sadka 1979 for an analysis of fiat money issue as a taxation device when
only commodity taxes are allowed.
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4. Lucas’ Incomplete Information Model

So far nothing has been said about business cycles. Among the aspects of
business cycles that call for explanation are time series relationships be-
tween, on the one hand, nominal aggregate demand variables like the deficit
and, on the other hand, real variables like total output. These relationships
appear paradoxical from at least two points of view. First, ordinary market-
clearing models with behavior generated by optimization free from various
kinds of money illusion do not seem to generate them. Second, such relation-
ships do not seem to be invariant; they do not hold in cross sections where
the observations are averages over time of the same variables for different
countries, and they do not seem to persist over time. Lucas’ (1972) model
shows how relationships with these properties can arise if ordinary market-
clearing models are altered so that individuals are faced with incomplete
information in a way that induces them to make inferences from observations
on the value of money. I will present a very simple version of Lucas’ model.
4.1. The Model

The model is a variant of that in section 2.2. The size of each generation is
random: N(¢) = N; > 0 with probability =; > 0, i=1, 2. The tax-transfer
scheme is that of section 2.2 except that it too is random: M(¢) = z(HM(t—1)
where z(1) = z; > 0 with probability 6, > 0, j=1, 2. N(#) and z(¢) are indepen-
dent of one another. Moreover, Ny/N». = z,/zs < 1, the equality being a very
special assumption, the need for which is discussed below. There is a com-
mon von Neumann-Morgenstern utility function u[c*(?)], the expected value
of which is maximized by each young person. And, as above, each young
person is endowed with y units of the single consumption good when young.
Storage is ruled out.

Two versions of this model will be studied. One is a complete information
version. In it, the young at time ¢ choose money holdings knowing M(¢—1),
z(1), and N(¢); that is, they know the money supply, M(f), and the size of
their generation, a demand variable. They also know the distributions of
z(¢t+1) and N(¢+1). In the incomplete information version, the young at ¢
choose money holdings knowing only M(¢—1) and the distributions of z(¢),
z(t+1), N(r), and N(t+1). They do, however, draw inferences about z(¢) and
N(1) from observing p(¢), the time ¢ value of money.

It is convenient to begin by rewriting constraints (1) and (2) as

n d=y—-q"()
(22) ) < {g(+q(Dz(t+1)—11}p(t+1)/p(0)
where g"(t) = p(9)m”(r) is the choice variable, g(f) = p()M(t)/N(?) is per

capita real money holdings, which the individual treats parametrically, and
where, by the definition of g(¢),

(23) p(t+1)/p() = N(t+Dg(t+1)IN(DHg(£)z(t+1).

In order to proceed, the distribution of ¢y(r), which depends on the informa-
tion restrictions, must be specified. The procedure to be followed is, first, to
in effect make a guess about certain properties of the equilibrium ¢,(¢) distri-
bution, and, second, to show that there is in fact an equilibrium satisfying
these properties.
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4.1.1. Complete Information

Here the guess is that there is an equilibrium in which for each value of
N(1) there is at most one value of g(#), that is, an equilibrium such that g(¢) =
qi lfN(t) = N,-.

Now if N(#) = N, and individuals forecast on the basis of g(¢) = g;, then by
(23) the distribution of p(¢+1)/p(¥) is given by p(¢+1)/p(¥) = N;q;/N;q;:z with
probability 7;6, there being four possible values of p(¢+1)/p(¢). This implies
a distribution for the right-hand side of (22), namely,

24) cx(j,k) < [gM(D)+aqi(zx— D)IN;q;INsqize

with probability m;0,, where cy(j,k) is second-period consumption if N(¢) =
N;, N(t+1) = Nj, and z(¢+1) = z. Given N(f) = N, for each value of q(1),
the choice variable, there are four possible values of c»(j,k) as j and k each
range over 1 and 2.

Thus, if N(#) = N;, gt(t) is chosen to maximize 3;3;m;0.ulcy,ci(J,k)]
subject to (21) and (24) with g; and N; known and treated parametrically. It
follows that for i=1, 2 the optimal value of gf'(¢) satisfies (21) and (24) with
equality and

(25) 0= 12 %Wjek{ul[cli:c%(j;k)] — sl ¢y, ¢l JK)IN;@iIN:qizic } -

Since all members of generation ¢ are identical, for equilibrium we must
have gP(t) = g;for i=1, 2. Therefore, for each i the equilibrium g¢; satisfies

(26) 0= ?« %Wjek{ul(y_qi:qij/Ni) —us(¥—q:,4;NiIN)N;qiI Nigizi

giving us a pair of equations in g, and g,. Letting n = X,.60,/z;, the mean of z7,
we may rewrite (26) as

27 0= J2'[77'1'”1(}’_(Iz',qij/Ni)]
-7 g«[ﬂ'juz(}’—Qi,QJNj/Ni)N,-qj/Ni(Ii], i=1,2.

Notice that for any equilibrium of this kind, % is the only aspect of the
distribution of z(¢) that matters for real variables and, hence, for expected
utility. It follows that in an equilibrium of this kind, there is no correlation
between z(¢) and real variables.

4.1.2. Incomplete Information

Here the young choose ¢g*(f) knowing only M(¢—1) and the current value
of fiat money, p(#). The surmise is that there is an equilibrium in which for
given M(¢—1), p(t) and N(#)/z(¢) are in one-to-one correspondence with p(#)
strictly increasing in N(#)/z(#). Note that N(r)/z(¢f) may be thought of as a
measure of the demand for money at ¢ relative to the supply at ¢ and that for
our specification there are three distinct values of N(£)/z(¢).

In such an equilibrium, knowledge of p(¢) implies knowledge of N(#)/z(?).
And for two of the possible values of N(#)/z(f)—namely, N,/z, and N,/z,—
knowledge of the ratio N(#)/z(¢) implies knowledge of both N(¢) and z(¢). But
because Ny/N, = z,/z, if N(1)/z(f) = Ni/z, its intermediate value, then either
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N(#) = N, and z(¢) = z; or N(#) = N, and z(f) = z;. In other words, if p(f)
takes on its intermediate value, then either both demand and supply are low
or both are high. This is what gives rise to more uncertainty in this version
than in the complete information version &

The hypothesized correspondence between p(f) and N(#)/z(¢) implies that
an observation on p(#) is equivalent to an observation on g(¢) since g(¢) =
p(OM(t—D[z()/N(1)] and M(r—1) is known. We further hypothesize that the
equilibrium is such that g(¢) is a function of N(¢)/z(?), namely, that g(f) = g4
if N(r) = N; and z(#) = z; with q;; = qq.. This is equivalent to hypothesizing
that the equilibrium sample space for the price level, 1/p(¢), is proportional to
the known pretransfer stock of money, M(¢—1).

The distribution of c,(#) conditional on N(#)/z(¢) can now be described. If
N(0/z(?) = Ny/z; with i # j, then forall k and r

(28) ceis(h,r) < [gB(D+qi 2 = DINeGr/ Nigisz»

with probability ,.0.. Aside from different subscripting, this is the same as
(25). Thus, if i # j, then for each value of the choice variable, g"(r), there are
four possible values of second-period consumption. If N(£)/z(t) = Ni/z;, then
forall/, k, r

(29) Gui(k,P) < 1gh(D+qi(z-— D)INqer/ N:guize

with probability p;7.0,, where p; = m:0,/(m0,+m.6;) is the probability that
N(f) = N, given that [N(#),z(#)] is either (N,z;) or (N,,z). In this case, the
value of N(#) = N; cannot be identified so there are eight possible values for
second-period consumption for each value of the choice variable, g&(1).

Therefore, if N(£)/z(t) = N;/z; with i # j, then expected utility is 33, 7.6,u
[ay,cu(k,r)]. This is maximized by choice of gfi(f) subject to (21) and (28).
Thus for (i,j) = (1,2) and (i) = (2,1), the optimal choice satisfies (21) and (28)
with equality and

(30) 0= Elgl’n'kor{ul[Clijxczij(k;r)]_uz[clii;C2ij(k:r)]qu&'r/Niquzr}-

If N(£)/z(f) = Nilz;, then expected utility is 3;3,3,.0;m.0-ul cy;, c2i:(k,r)]. This
is maximized by choice of g&(¢) subject to (21) and (29). The optimal choice
satisfies the constraints with equality and

(€)))] 0= ? % rzpi'n'kor{ul[clii;cﬁi(k:r)]
= sl cit, €2k, ) IN L Qe /N G120 )«

Since for equilibrium we must have g = g;, (30) and the relevant con-
straints at equality give us two equilibrium conditions: fori # j

32) 0= ? §7Tk9r[ux()"“Imeri/Ni)
= s(y =y, NieGuer/ Ny Nie @i/ Nig52,-1

8The special assumption Ny,/N, = z,/z, is needed because in arbitrary discrete sample spaces an
observation on a ratio is in general equivalent to an observation on both the numerator and the
denominator. Lucas avoids the equivalence by working with continuous sample spaces.
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while (31) and the relevant constraints at equality give us one condition

(33) 0= % % gpiﬁkor[ul(y'_qii:qukr/]vi)
—u5( Y~ G5, NeGerl N)) NieGrer/ NG 2,).

Together, (32) and (33) are three equations in the three values of g;;: 12, g21,
and q;; = goo.

4.2. A Numerical Example
I will display the incomplete information solution for the following example:
y = 1.0, ulc(£)] = ()2 + (c])?, 2, = 1.0, 2, = 1.1, and 7, = 6, = 1/2 for all
kandr.

For these parameter choices, (32) can be written as

GO qr—g0)™ = (29 3 S((Negunl Nz, ], 1%]

while (33) can be written as

(335 qi(y—qu) "V = (. 125) IE E go[( Niqwr/ N2z, ).

The solution for the g;;’s, which satisfies the hypothesized corre-
spondence between p(t) and N(£)/z(t), is as shown in Table 1. In a long time
series for this economy, each of these cells turns up one-quarter of the time.
Therefore, observations on the pairs [g(?),z ()]—per capita real saving or
real money holdings and the gross growth rate of the money supply—give
rise to the scatter diagram shown as dots (e) in Figure 4. (Each dot repre-
sents one-quarter of the observations.)

Table 1
4 zi= 1.0 2o = 1.1
N
N, 477 485
N, .469 477

I said above that Lucas’ model is one of noninvariant time series relation-
ships. In this context, noninvariant means that the distribution of g(#) im-
plied by a different distribution for z(#) cannot be inferred by simple extrapo-
lation from the dots in Figure 4.

Thus, for the same economy but z; = (1.2)z;, i=1, 2, which represents
a more expansionary fiscal policy, the solution for the g;;’s is as shown in
Table 2. The implied [g(),z’()] time series scatter is represented by triangles
(4)in Figure 4.

I can also describe the equilibria for some degenerate z(¢) distributions. In
such cases, the equilibrium is given by the complete information model since
if z(¢#) is nonrandom, an observation on p(¢) is equivalent to an observation on
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Table2
z z1 =1.2 zs = 1.32
N
N, .388 395
N, .381 .388

N(?). For the economy of the numerical example, but z(¢) = z for all ¢, (27)
can be written as

(36) a(y=q)™"" = (22NN, i=1, 2.

If z =1(n=1), then q(#) = .508 when N(#) = N, and g(¢t) = 492 when N(z) =
N.. This solution and that for z = 1.1 (y=1/1.1) are shown in Figure 4 as
circles (0).

As these examples demonstrate, the regression equation between g(¢) and
z(#) that shows up for realizations under a given distribution for z(¢) is not one
that continues to hold if that distribution is replaced by another distribution.
The same is true of regressions of g(¢) on p(t+1)/p(z) or on p(t)/p(t—1). Being

Figure 4
Alternative [g(¢), z(#)] Time Series Distributions
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regressions of a choice variable on a rate of return, one may be tempted to
call these demand functions. But this would be a mistake, as the reader can
verify by studying the distributions of these variables in the examples. This is
not to suggest, though, that observations on [g(#),z()] are useless. If every-
thing about the economy of the example were known except for the value of y
in u(c®) = (c?)” + (cf)” and the distribution of z(f), then observations on
[g(1),z(5)] would permit estimation of . This, in turn, would allow predic-
tions to be made about outcomes under different z( ) distributions.

4.3. General Implications

Two features of Lucas’ model should be kept distinct. One is the nature of
the relationships implied under a particular regime. The other is the absence
of invariance of these relationships.

With regard to the first feature, Lucas produces a model in which aggre-
gate output is higher the higher is the realized deficit, z(¢). This is accom-
plished by generalizing the model above in two directions. One involves
endowing the young with productive, nonstorable labor instead of output and
making leisure an additional argument in the utility function. With gross
substitution between first- and second-period utility, a positive correlation
between per capita output and z(¢) is implied” This correlation is converted
to one between aggregate output and z(#) by treating the aggregate as a sum
over separate subeconomies, each of which is like the economy just de-
scribed. The subeconomies are related in two ways: at any date ¢ their N(¢)
realizations sum to a constant and their z(¢) realizations are identical.

With regard to the second feature, noninvariance of price-quantity time
series correlations is a general property of models in which individuals face
uncertainty. In such models, individuals act on the basis of the distributions
they think they face® They respond to observations on prices only to the
extent that these are relevant as conditioning variables for subsequent distri-
butions they will face. In particular, the individual terms in a time series of
prices and quantities implied by such a model are not the outcomes of a
sequence of separate conceptual experiments in which individuals are faced
with alternative nonstochastic budget sets. Yet despite the fact that mac-
roeconomics is concerned almost entirely with saving and portfolio decisions
in which uncertainty and dynamics are acknowledged to play crucial roles,
macroeconometric models and, indeed, the macroeconomic paradigm that
flows from Keynes’ (1936) General Theory via Hicks (1937) consist of noth-
ing more than interpreting each term in a time series as the outcome of a
separate, static, nonstochastic experiment.

As this discussion suggests, one does not need anything as subtle as
Lucas’ incomplete information model in order to produce noninvariant time
series correlations. The role of the incomplete information model is to pro-
duce positive correlations between variables like the government deficit and
total output. It is worth noting that Keynes defined the existence of involun-
tary unemployment as no more than the existence of such Phillips curve
correlations.?

7See Lucas 1977 for a defense of the assumed labor supply response.

80ne well-known example is the Tobin (1958) portfolio model. For other examples, see Lucas
1976.

9 According to Keynes (1936, p. 15), people are *‘involuntarily unemployed if, in the event of a
small rise in the price of wage-goods relatively to the money-wage, both the aggregate supply of
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5. The Insignificance of Open Market Operations

In the models so far examined, there is a close association between the time
path of the supply of fiat money and the time path of its value. Moreover, the
usual neutrality proposition holds for those models in the following sense. If
[e(t—1),k(D,p(D] for t=1, 2, ... is an equilibrium for a given M(t) sequence,
then [&(¢t—1),k(¢),p(2)/A] is an equilibrium for the sequence AM(t) for any
A>0.

But those results imply nothing about the effects of changes in the money
supply that are brought about through asset exchanges. For asset exchanges,
it will be shown that the following is true: If fiscal policy is held fixed (in a
way to be made precise below) and government and private transaction costs
are the same, then the portfolio of the government—that of a consolidated
Federal Reserve-Treasury, say—does not matter, even for the value of fiat
money !?

The need for a proviso about fiscal policy is clear. If the Federal Reserve
makes a foan or buys a security that pays interest, some assumption must be
made about what happens to the interest. My assumption corresponds to
assuming that the interest goes to the Treasury which uses it to reduce other
taxes or to increase other transfers.

I will first ignore transaction costs and consider 2 model in which the asset
purchased in an open market operation is real capital or, equivalently, a title
to it. 1 will then turn to the special case in which open market operations are
conducted in government bonds. I will close the section by arguing that there
is no obvious evidence that contradicts the view that asset exchanges hardly
mafter.

5.1. Government Holdings of Risky Real Assets
I will work with the model of section 2.2 except that here x, the return on
storage, is in each period an independent drawing from a discrete probability
distribution: x(#) = x; > 0 with probability =; > 0, where i=1, 2, ..., I and
where 3ymx; > n. Moreover, the realization of x(#)—the gross return on
goods stored from 7 to £+ 1 —occurs after generation 1— 1 disappears and after
generation ¢ commits itself to a portfolio, but before generation ¢+ 1 appears.
Thus, intergeneration risk sharing via markets is precluded.

I will also assume that the common utility function « is von Neumann—
Morgenstern and that each young person maximizes expected utility. [ con-
tinue to assume N()/N(t—1) = n. '

5.1.1. Possible Stationary Equilibria With a Fixed Money Supply
and No Government Storage

It is convenient to describe the choice problem and, hence, equilibrium
conditions in terms of demands and supplies for contingent claims on
second-period consumption. Thus, let s; be the price in units of first-period
consumption of one unit of second-period consumption in state i, state i
being the outcome x(#) = x;. I will denote by ¢;; second-period consumption
in state i.

labour willing to work for the current money-wage and the aggregate demand for it at that wage
would be greater than the existing volume of employment.™’

o[t may be helpful to note that this is nothing but a Modigliani-Miller irrelevance-of-

financial-structure result in which the government is a financial intermediary in the same way as is
the corporation in the Modigliani-Miller theory.
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Each young person chooses ¢; and ¢; for each i to maximize 3;mu( ¢, ;)
subject to

(37 ¢+ iEsiCZi =y

treating the s;’s as parameters. The necessary and sufficient conditions for a
maximum are (37) at equality and for each i

!
(38) il (Cy,Co1) = Sij§1 T514{ €1, Ca5).

These conditions are implicit demand functions.

Supplies are generated by competitive firms. Profits from storing k = 0
units of consumption good are k(Z;s;.x;—1) and must be nonpositive in any
competitive equilibrium. Thus, 3s5x = 1 in an equilibrium with positive
storage. Profits from storing m units of money are mip(t+1) ;5 —p(2)], it
being taken for granted that there is an equilibrium in which p(¢+1) does not
depend on i. Moreover, anticipating that in a stationary monetary equilibrium
with a fixed money supply p(z+1) = np(?), it follows that n¥;s; = 1 in such an
equilibrium.

Thus, a stationary nonmonetary equilibrium for this economy consists of
nonnegative values of k, ¢, and ¢;; and s; for each i that satisfy (37) at
equality, (38), the nonpositive profit condition, 3;s;x; < 1, and

(39) e = xik, i=1,2,...,1

where k is per capita storage of the consumption good. It is easy to show that
such an equilibrium with £ > 0 exists and is unique. We denote the equilib-
rium values by adding a star (*).

A stationary monetary equilibrium for this economy consists of nonnega-
tive values of k, ¢, ¢, and s; for each i and a positive value of g that satisfy
(37) at equality, (38), two nonpositive profit conditions, 3;s;x; < 1 and n3;s; =
1, and

(40) ai=xk+ng, i=1,2,...,1

where g = p(f)M/N(¢) for all ¢. I will denote any such equilibrium by adding
two stars (**) 1t

5.1.2. Stationary Monetary Equilibria With G overnment Storage

Let k, be per capita storage by the government. I will study equilibria in
which the government acquires k, by a new issue of money and in which it
maintains these holdings in every period but does not alter its consumption
because it is storing k,. This implies that the government must transfer the
amount x(f)N(t)k, — N(t+ 1)k, in period ¢+1. I assume that each of the N(¥)
members of generation ¢ receives (x;—n)k, if x(f) = x; in the second period of
her or his life. Moreover, this transfer (or tax, if negative) is viewed as
lump-sum. These assumptions imply

PROPOSITION 8. If the stationary monetary equilibrium exists, then the con-
tingent claims prices, the consumption allocation, and the value-of-money

1IThe condition 2,7 x; > n insures that K** > 0 in any stationary monetary equilibrium.
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sequence of that equilibrium, and the per capita portfolio, k = k** — k; and
q = q** + kg, are an equilibrium for any k, < k**

Proof. At s; = s* for all i, the value of taxes k,3;s;(x;—n) is zero. Thus, (37)
remains the budget set, while in place of (40), we have

(41) G = x;k + ng + (xi—n)k,.

Thus, if k = k** — kyand g = g** + k,, then ¢; = ¢§* To verify that the p(£)**
sequence is an equilibrium value-of-fiat-money sequence, we must show that
for this price sequence, the amount of money, M, that satisfies the govern-
ment budget constraint for the purchase of k,, namely,

42) PO M —M**) = N(1)k,

also satisfies g = g** + k,. But this is immediate and completes the proof.

Proposition 8 is not a liquidity-trap result. It is not the case that private
sector demands for storage and money holdings are perfectly elastic. The
result arises because of the way profits and losses on the government’s
portfolio are passed back to individuals by way of transfers and taxes.

It is crucial for Proposition 8 that taxes and transfers be passed back on an
equal per capita basis. Thus, for example, if instead, any taxes (x;<n) are
levied on, say, the odd-numbered members of generation ¢ and any transfers
(x;>n) are given to the even-numbered members of generation ¢, then Propo-
sition 8 does not hold. It is not necessary, however, that individuals be
identical in tastes and endowments.

The upper bound on £, is also crucial. If government storage exceeds what
would otherwise be undertaken by the private sector in a monetary equilib-
rium, (k**<k,<k*), then since private storage is nonnegative, private
holdings cannot simply offset government holdings. The larger is %, in this
range, the closer is the economy pushed toward a nonmonetary equilibrium.
In other words, in this range the more the government stores, the lower is the
value of fiat money?2? Whether this is to be regarded as monetary policy is
debatable; the equilibrium value of transfers implied by unchanged govern-
ment consumption is negative if k, > k**.

5.2. Government Bonds and the Optimal Financing of Deficits'®

In the United States, open market operations are conducted mainly in gov-
ernment bonds. For a given fiscal policy, one may approach the study of such
open market operations by posing the following question: For a given time
path of total (outside) government debt, the time path implied by fiscal pol-
icy, what are the effects of varying the proportions of the total between fiat
money and so-called interest-bearing debt?

Any theory of the composition of total government debt must explain
positive interest on safe government debt, where safe means free of default
risk. Bryant and Wallace (1979a) argue that transaction costs must be in-
voked to explain positive nominal interest on such debt. One transaction-cost

12To find a stationary monetary equilibrium for k, € (k** k*), solve (37) at equality with y
replaced by y + k, 3isi(x;—n), (38), and (41) with k = 0 for ¢\, g, ¢, and s; with 35, = V/n and s
= 1. Then the value of money, p(r), is found from g — p(H)M**/N(t) = k, and the money supply,
M, from g = p()M.

13This section summarizes Bryant and Wallace 1979a,b.
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model posits that government bonds (Treasury bills and so forth) are issued
in denominations so large that most potential holders cannot or do not want
to hold them directly. They must be broken up or intermediated by way of a
resource-using intermediation technology!* But the detailed model of trans-
action costs is probably less important than the recognition that if safe bonds
bear nominal interest, then it must be that the bonds are somehow more
costly for the private sector to absorb than is fiat money.

By itself, nothing is implied for the optimal composition of total debt from
such relative costliness of bonds. If the private sector costs of absorbing
bonds are precisely matched by government real resource savings from issu-
ing bonds (instead of issuing fiat money), then a version of Proposition 8
would hold; that is, the composition of the total of net or outside debt would
not matter. Bryant and Wallace do not assume such symmetry of transaction
costs. Instead, they assume that the government—a consolidated
Treasury—Federal Reserve in the United States — is indifferent in terms of
real resource costs between issuing fiat money and issuing and selling bonds.

This particular asymmetry implies a very simple result. Barring special
circumstances having to do with price discrimination or particular second-
best situations, if bonds bear interest, then too many are outstanding. In-
deed, if bonds bear interest whenever the public holds any, then—and again
barring special circumstances — the only efficient composition of total out-
side debt is one composed entirely of fiat money.

That the possibility of price discrimination could vitiate this result is obvi-
ous. If by issuing different kinds of debt, the government, a monopolist in
issuing safe titles to fiat money, can face groups with different demand func-
tions for nominally safe debt with different rates of return, then efficiency
does not call for all debt to be zero-interest debt. Recall that perfect price
discrimination is consistent with efficiency.

One potentially relevant second-best situation concerns the role of cur-
rency reserve requirements in limiting the size of insured intermediation.
(See Bryant and Wallace 1979b.) Given a system of improperly priced de-
posit insurance —and, on the face of it, both that provided by the FDIC and
that provided by Federal Reserve lender-of-last-resort activity would seem
to be improperly priced — portfolio restrictions, including reserve require-
ments, play a potentially important role in limiting the effects of the distorting
incentives produced by the insurance.

But neither of these special circumstances can be expected to validate the
usual analysis of open market operations. From a macroeconomic point of
view, there is a sense in which such special circumstances — including the
sort of transaction-cost asymmetry assumed by Bryant and Wallace — are
only wrinkles on Proposition 8. The theoretical presumption is that the value
of fiat money is not much affected by the composition of the total of the net or
outside debt of the government.

5.3. Casual Remarks on Evidence

As with the absence-of-dominance implication, the implication that the com-
position of the government’s portfolio is largely irrelevant for the value of fiat
money cannot be dismissed easily by casual empiricism.

"To invoke transaction costs to explain positive nominal interest on safe assets is not new.
This is done in the inventory models of money demand. See Baumol 1952, Tobin 1956, and Miller
and Osr 1966.
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While there are many historical episodes in which measures of money and
measures of total nominal income and/or the price level move up and down
together, the implied simple correlations by themselves say nothing about the
effects of government asset exchanges.

Most, if not all, of these episodes are ones in which increases in the
amount of money are accompanied by asset creation and decreases by asset
destruction. Throughout history, the major increases in the amount of money
have come about by way of coinage debasements, discoveries of the com-
modity money, and budget deficits; the major decreases have come about by
way of banking panics and, to a lesser extent, budget surpluses. None of
these qualify as asset exchanges. Moreover, from the point of view of the
models described above, such changes in the amount of money ought to be
accompanied by price level changes.

Some would take the implications of macroeconometric models to be a
second source of evidence against the view that asset exchanges do not
matter. But this would be a mistake. As has long been recognized, the impli-
cations for monetary policy that flow from such models depend in a crucial
way on the estimated so-called money-demand functions imbedded in the
models. But these estimated relationships consist of little more than the
simple correlations between measures of money and measures of total nomi-
nal income referred to above. And like them, they may well take the form
they do only because they are estimated on observations generated by
policies under which changes in the measure of money are accompanied by
changes in asset totals in the same direction.

A third purported body of evidence is designed to overcome the objection
just raised to simple correlation studies. It consists of time series regressions
of variables like the price level, total nominal income, real income, and the
unemployment rate on measures of both monetary policy and fiscal policy
and perhaps some other variables. Examples are recent studies by Stein
(1976) and Perry (1978). These investigators treat their regression equations
as invariant relationships, as relationships that would continue to hold no
matter what rules for the monetary and fiscal policy variables were put into
effect. For a host of reasons, many of which already appear in the literature,
such a view is preposterous. Yet these authors proceed as if invariance is
obvious and does not even require a defense.

I will cite just a few reasons why the invariance view of such regression
equations is farfetched. In any sensible model, the correlation (simple or
partial) that turns up in time series between a measure of the deficit and other
variables under a policy regime in which the deficit is in part random says
little about what the response of the economy would be to alternative perma-
nent levels of the deficit. (This is true in both the complete and incomplete
information versions of the model described in section 4.) One reason is that
a deficit viewed as temporary and likely to be offset by some future surplus
gives rise to quite different expectations about future tax liabilities and future
prices than does a new level of the deficit that is viewed as permanent. In a
similar vein, can it be that the regression that turns up is independent of the
sort of policy that the Federal Reserve was following? In particular, can it be
independent of whether the Federal Reserve was focusing on interest rates or
monetary aggregates? Finally, the invariance view of these regressions im-
plies that nothing happens at time ¢ if it is then announced that a huge perma-
nent deficit will be run starting at time ¢+ 1. Is that believable?
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Unfortunately, I am not clever enough to end these remarks with a de-
scription of the right set of tests of the view that the government’s portfolio
hardly matters. [t is even conceivable that the relevant experiment has not
yet been performed?s

6. Country-Specific Fiat Moneys!®

So far I have considered economies with one government and at most one fiat
money. [ now turn to a world economy with many governments and, at least
potentially, many fiat moneys. The main result is that the market left to itself
cannot cope with more than one fiat money.

Consider two economies (countries) of the kind described in section 2.2.
For simplicity, let these be identical except that each country has its own
tax-transfer scheme. (Think of country 1 as issuing red pieces of paper and
country 2 green pieces of paper.) If residents the world over are free to
choose to hold whatever money they want, then it follows that if there is an
equilibrium in which at least one money has value, then the value of one
relative to that of the other (the exchange rate) is constant over time. This is
an instance of the absence-of-dominance implication. Moreover, for any un-
changing exchange rate, there are equilibria. Why? Name an exchange rate.
This allows us to aggregate the red and green pieces at any date into an
equivalent number of red pieces, say. Put differently, the named exchange
rate and the time paths of the separate money supplies imply a time path of
the world money supply. And for any such path, we can display the possible
equilibria. Since this is true for any named exchange rate, it follows that there
is no market-determined exchange rate. Nor can this result be avoided by
simply adding uncertainty. The indeterminacy will not go away by making
the deficit in one or both of the countries random.

The indeterminacy just described arises in a regime in which there is no
intervention in exchange markets and in which there is unfettered interna-
tional borrowing and lending; that is, there are no capital controls. It is a
regime in which each government does no more than operate its own tax-
transfer scheme. Kareken and Wallace (1978) argue that only two kinds of
regimes can be expected to prevail. If governments insist on autonomy of
budget policies — different values of z in the context of the model of section
2.2 — then the relative values of the two currencies must change over time
with that of the country with the higher value of z falling relative to that of the
other country, and there must be controls that prevent residents of one coun-
try from freely borrowing and lending internationally. But if governments
coordinate budget policies-——have identical z’s—then there can be unfettered
international borrowing and lending if the exchange rate is fixed either
cooperatively or by one country acting on its own.

These results are established in two steps. The first is a standard argu-
ment. If the budget policies differ, then the exchange rate cannot be constant.
If it were, residents of the country with the smaller deficit (smaller value of z)
would eventually be permanently subsidizing residents of the other country.
[To argue that there is no subsidy if the country with the smaller deficit holds

15Surely one cannot take the view that history has necessarily generated enough observations
to allow us to decisively test every proposition of interest. If this is true for propositions in
economics, why not also for those in every other science?

16This section consists of a brief summary of Kareken and Wallace 1978.
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its reserves in the form of interest-bearing assets is fallacious since it depends
on the Fisherian notion that (most?) real interest rates do not depend on the
anticipated inflation rate.] The second step simply invokes absence of domi-
nance. The exchange rate can change only if residents are restricted in their
portfolio choices.

7. Concluding Remarks
Stanley Fischer (1975, p. 159) concluded the section of his survey paper
devoted to microeconomic foundations of money as follows:

This work [that on the foundations of monetary theory] is obviously
both difficult and only a beginning. It is not clear where, if anywhere, it
will lead. It will no doubt provide more convincing and carefully worked
out explanations for the use of a medium of exchange than we now have,
but it appears that those explanations will not be fundamentally different
from the traditional verbal explanations, and that they will not have any
major consequences for the way in which macromodels are built.

Fischer’s pessimism is due, in part, to the fact that the work he surveyed
was not carried to the point where it could confront most practical problems
in monetary theory and policy and, in part, to the notion that the only practi-
cal implications that could possibly flow from such work are a suggested list
of arguments and a functional form for the demand function for money.

From our vantage point, the pessimism seems unwarranted. While the
reader may find much to quarrel with in what I have presented, two points
must be conceded. First, models built on the overlapping generations friction
do meet the criteria for being models of money with a microeconomic foun-
dation. (In slightly different words, those models do successfully integrate
value and monetary theory.) Second, they do confront and have radical im-
plications for practical issues in monetary theory and policy. Moreover, I
would hazard two conjectures, the first with more confidence than the sec-
ond. Any microeconomic model of money that maintains intrinsic useless-
ness will have implications sharply at variance with currently held views.
Furthermore, any such model will have implications not all that different
from those described in the body of this paper.

Yet many readers, I surmise, remain unconvinced. Many, I suspect, still
hold to the view that the overlapping generations model is defective because
it captures only the store-of-value function of money and, in particular, does
not capture the medium-of-exchange function of money.

Presumably, the medium-of-exchange function is meant to be an addi-
tional function of money. (Since money must be held in any model of it, any
model of money displays the store-of-value function.) But what is this addi-
tional medium-of-exchange function? One hopes that giving money this ad-
ditional role is not the same as abandoning intrinsic uselessness and is not
tantamount to requiring that we find a role for money in a nondynamic set-
ting. But if not, then what does it mean? To say that money plays a
medium-of-exchange role if it facilitates trade or is traded relatively fre-
quently is not very helpful. After all, money gets traded in the overlapping
generations model; in some versions it is the only thing traded, in others not.
And, of course, it facilitates trade; in some versions, the old and the young
cannot trade at all except via money. Could it be that this distinction between
roles of money is not all that useful? The possibility should be taken seri-
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ously. After all, although this distinction has been around for a long time, not
a single proposition in monetary theory makes use of it. At a minimum, this
should make us question whether saying that a model gives money this or that
role is a serious criticism of the model.

But none of this is to suggest that the overlapping generations model is, as
it were, the last word in models of money. (I would say it is the first word in
models of money.) As noted above, there is general agreement that one needs
to introduce some sort of friction into the Walrasian (Arrow-Debreu) general
equilibrium model in order to get from it a model of money. But some friction
is also needed for a more general problem; the explanation of the form that
interactions take among agents where interactions via Walrasian markets is a
limiting special case. The obvious goal is a specification of friction that simul-
taneously provides insights into many forms of interaction, not just market
interactions via fiat money.

A related limitation of the overlapping generations model is that money, in
a way, works too well in that model. Money completely overcomes the
friction. Given a real friction, there is no reason why it should be feasible to
overcome it completely!? A somewhat trivial way to overcome this defect is
to make running the monetary system costly, for example, by making it
costly to print money and to prevent counterfeiting. A less trivial way of
dealing with this defect involves a theory of the social management of fiat
money. Such a theory may also eliminate either the nonmonetary or the
monetary equilibrium when both exist. All we have now in the face of these
multiple equilibria are the propositions, established for some versions that
connect the nonoptimality of the nonmonetary equilibrium with the existence
and optimality of some monetary equilibrium.

17This is related to if not identical with Hahn’s (1973a) distinction between essential and
inessential monetary equilibria.
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Appendix

Al. Proof of Proposition 2
Letting (1) =p(H)M(1)/N(2) for all ¢, the forecasting scheme (13) is equivalent

to

(A1)

q(t+1) = Ag() + (1=Mg(y) allt=2.

But g( 1) as a function of g(¢+ 1) is given by

(A2)

(0= HIG(t++1)]  if (a/2)g(t+Dig(t) > x
G(t+1D(n/zx) otherwise

where, recall, p(¢+1)/p(£) = (n/2)g(¢+1)/q( 1) is the predicted rate of return on
money.

I will use (A1) and (A2) to find g(z+1) as a function g(?).

If g(?) is given by the upper branch of (A2), then by (A1)

(A3)

q(t+1) = Ag(8) + (1-MH[g(¢+ D]

But by the hypothesis on H, g(¢) and g(z+1) satisfy (A3) if and only if

(A4)

g(t+1) = Glg(n]

where G’ = M[1 — (1-M)H'] € (0,1) and where § is the unique fixed point of
both H and G.1t follows that § sequences that satisfy G converge monotoni-
cally to g.

If (1) is given by the lower branch of (A2), then by (A1)

(AS5)

F(t+1) = F(OMI1—(1—Nnfzx].

To prove parts a and b of Proposition 2 we consider two cases:

1.

xz/n < 1, g(#) = G. Suppose at least one of the hypotheses holds with
strict inequality. We first show that, then, only the upper branch of
(A2)is consistent with the hypotheses. To verify consistency, note that
(1) = g implies G[q(#)] = § which implies H{G[Z(N]} < G[3(1)]
which, in turn, implies satisfaction of the proviso for the upper branch
of (A2). To verify inconsistency with the lower branch of (A2), note
that (AS) implies g(¢+1) > g which implies choosing greater second-
period consumption at the rate of return x than at the rate of return n/z
= x, a violation of our normal goods assumption on preferences. Thus,
with strict inequality in one of the hypotheses, we have monotone
convergence of {g(f)} to G via (A4). If both hypotheses hold with
equality, then g(#+1) = g by (AS).

2. xz/n < 1, g(?) < 4. Here either branch of (A2) may be consistent with

the hypotheses. But whichever is we get g(#+1) > g(f) and con-
vergence of g to §. [Note that (AS5) is exponential increasing with xz/n
<1]
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Now since xz/n < 1implies that § = g* and since convergence of {G(#)} to §
implies convergence of {g(#)} to g cases 1 and 2 give us parts a and b of the
proposition.

To prove part ¢ we consider xz/n = 1 and g(f) < §. Here g (¢+1) can only
be taken from (AS3), that is, g(f) and g(¢+1) can satisfy only the lower branch
of (A2). But (AS) implies g(t+1) = g(#) and, hence, part c of the proposition.

To prove part d we again consider two cases:

1. g(1) > 4. Here g(t+1) and g(¢) may be consistent with either branch of
(A2). But both imply g(¢+1) < g(¢#). We cannot get convergence to §
because for g(1) close enough to g, xz/n > 1 implies that g(z+1) and g(¢)
cannot satisfy the upper branch of (A2). Thus, we eventually get some
g < g, which brings us to the second case.

2. q(f) < §. Here g(¢t+1) must satisfy (A5) which implies convergence of
{q(?H} to 0 and hence convergence of g(¢) to 0, as we set out to prove.

A2. Proof of Proposition 3

Let a caret (") over a term denote an equilibrium allocation and a bar (7) over
a term a feasible Pareto superior (P.S.) allocation. I will show that the as-
sumed existence of the latter gives rise to a contradiction.

Without loss of generality, assume that the P.S. allocation satisfies (14)
with equality and that for all ¢+ = 1, v[e™(#)] = v[e¥ ()] for all » and /' in
generation ¢. (Given an allocation P.S. to the equilibrium allocation that does
not satisfy these conditions, one can easily construct the P.S. allocation that
is P.S. to the former and, hence, to the latter.)

1 will prove in detail that K(¢) = K(r) for all ¢ and will then refer the reader
to published results on pure exchange economies for the rest.

Suppose K(f) # K(¢) for some t. Then there is a smallest ¢ = 1 at which
this happens. 1 first rule out

A first departure of the form K(t) > K(1).
_ Being a first departure, it follows from (14) with equality that either (a)
Co(1—1) < Gy(2—1) or (b) Cy(1) < Ci(¢t) or both. _ .

Case (a): This is easy. Since ¢ is the first departure of {K} from {K}, we
havefori=1,2,...,t—1

(A6) C(t—i) + Co(t—i—1) = Ci(t=i) + C(t—i—1).

But by (a) and the properties of a P.S. allocation, Ci(t—1) > &i(¢—1). One
then proceeds backward from ¢—1 to t—2 and so on using (A6) to conclude
that C,(0) < C(0), a contradiction.

Case (b): This is more demanding. Under a feasible P.S. allocation, the
members of generation ¢ must have more second-period consumption than
under an equilibrium allocation. And since v[é*(£)] = x, the extra storage
does not produce enough. Therefore, it follows by (14) at equality that

(A7) C(t+1D) + K(t+1) — [C(t+1) + K(e+ 1)) = N(1+1Dd(1+1) > 0.
I now show by induction that the d sequence is increasing and unbounded.
Since [Ci(r+1) +K(¢+DI/N(@+1) <y, this will rule out K(f) > K(¢) under

case (b).
For the induction step, we use (A7) as an initial condition and consider the
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following problem.
Choose c(t+1)—an allocation for members of generation t+1—to
minimize Cy(¢+ 1) subject to

(A8) G+ 1) + R(t+1) — [C(t+1) + R(t+1)1= N(2+1)d(t+1)
(A9) ulch(t+1)] = ulér(t+1)].

Since T (£+1) is feasible for this problem—that is, satisfies (A9) and (A8) [see
(A7) ]—we have Co(t+1) = Cy(t+1), where a tilde (7) over a term denotes a
solution value for this minimization problem. Before we use this inequality,
though, we want to derive a convenient expression for C(¢+1) in terms of
d(t+1).

It is easily verified that there is a unique solution to this minimization
problem that satisfies (A8) and (A9) with equality and, since é*(¢+1)
= &M(t+1),T
(A10) &(t+1) — &+ =d(+1) + A(t+1), allh
where

A(t+1) = [R(t+1) — R(t+ 1DIN(t+1).

But in general, along a contour of u, ¢ = g(c}!) where g’ = —wfus = —v
and g’ > 0. Therefore, applying the intermediate value theorem to g, we have

(A1) glcl) = g(éP) + (& — ) [—g' (&) + felét — )]
where the function f;, whose argument is (& —'cP), is strictly increasing and
such that f(0) = 0.

Now since é(¢) and é*(f) are on the same contour of u, we may use (A10)
and (A11) to write
(A12) EB(t+1) = &r(t+1)

+ [d(t+ 1) + A+ DT {IER(t+ D] + feeen [de+1) + A+ DT}
or since
Co(t+1) = Co(t+1) = N(t+1) & (1+1),

(A13) [Co(t+1) — Co(t+ 1)1/ N(£+1)
= [d(t+1) + A+ DI{VIECE+ D] + foern [d (2+1) + A2+ 1)}

But since the P.S. and equilibrium allocations satisfy (14) at equality, we
have

C(r+2) + R(t+2) — [Ci(1+2) + K(t4+2)]1 = N(t+2)d(1+2)

= Cy(1+1) = Gt +1) — xN(t+DA(£+1)
tWe could get by without this last assumption. See Kareken and Wallace 1977.
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or

(A14) d(t+2) = [C(t+1) — Gt + D1/ N(t+1n — xA(++1) / n.

Then using (A13)

(A15) d(t+2) = d(e+ 1) v (e+ D1/ n + A+ {v[E @+ D] —x}/n
+ [d(t+1) + A2+ D] fogrn [d(z+1) + A(z+1)1/ n.

The right-hand side consists of a sum of three terms. The last term has the
form (-) f(-) / n which is nonnegative by the properties of /. The second term
is also nonnegative since v[é*(z+1)] = x with strict equality if A(z+1) < 0. [If
A(#+1) <0, then K(¢-+1) > 0.] Thus (A15) implies

(A16) d(t+2) = d(t+ 1) v[e(t+ D]/ n = d(t+1) (x/n).

Thus the d sequence is bounded below by a strictly increasing exponential
and hence is unbounded.
Next I quickly rule out

A first departure of the form R(t) < K(1).
If there is such a P.S. allocation, then by (14) either

(A17) C(t+1) + R(t+1) < G+ + Kt +1)
or

(A18) Co(t) < Cy(D)

or both. If (A17) holds, we have an initial condition for the induction proof
just given. If (A18) holds, then C(» must exceed C(£) by more than *[K(1) -
K(5]because K(1) < K (¢) implies K(?) > 0 and hence v[é"*(#)] = x. But then
we can work backward as under case (a) above. .

We have now proven that if there is a P.S. allocation, K(1) = K(r) for all ¢.
Therefore, by (14) at equality, any such P.S. allocation satisfies

(A19) Cu(H) + Co(t—1) = C1) + Co(t—1) forallr= 1.

Then, since v[é"(c)] = x > n, one can derive a contradiction from assuming
that somebody is strictly better off under a P.S. allocation than under an
equilibrium allocation. To prove this the reader can either adapt the case (a)
and (b) arguments above or can consult the proof in Kareken and Wallace
1977, which itself is similar to the case (a) and (b) arguments made above.

A3. Proof of Proposition 5
Here | outline a proof that follows closely the proof of Proposition 3.

First, one rules out the existence of a feasible P.S. allocation with a first
date ¢ = 1 at which K(f) > 0. In such a proof one gets to an expression like
(A15), but in this case with A(¢+1) = 0. And since v(&) = n, one must use the
fact that the relevant f function in the third term on the right-hand side of
(A15) is strictly increasing. Then, any feasible P.S. allocation—that is, any
bar allocation—satisfies (A19) and one can proceed as indicated there.
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